纵向数据误差下恒应力加速退化试验分析

Sai-Yin Zhang, Zhongzhan Zhang
{"title":"纵向数据误差下恒应力加速退化试验分析","authors":"Sai-Yin Zhang, Zhongzhan Zhang","doi":"10.1109/ISI.2011.5984106","DOIUrl":null,"url":null,"abstract":"In industrial statistics, the degradation test is regularly used in the analysis of product reliability. This paper is focused on the modeling of accelerated degradation test with longitudinal observation under constant stresses with Berkson-type measurement errors, and suggests the minimum distance estimator for the parameters in the model. The consistency and asymptotic normality of the estimator are obtained, and the performance of the estimator for moderate sample sizes is shown by simulation.","PeriodicalId":220165,"journal":{"name":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of accelerated degradation test under constant stress with errors for longitudinal data\",\"authors\":\"Sai-Yin Zhang, Zhongzhan Zhang\",\"doi\":\"10.1109/ISI.2011.5984106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In industrial statistics, the degradation test is regularly used in the analysis of product reliability. This paper is focused on the modeling of accelerated degradation test with longitudinal observation under constant stresses with Berkson-type measurement errors, and suggests the minimum distance estimator for the parameters in the model. The consistency and asymptotic normality of the estimator are obtained, and the performance of the estimator for moderate sample sizes is shown by simulation.\",\"PeriodicalId\":220165,\"journal\":{\"name\":\"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2011.5984106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2011.5984106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在工业统计中,退化试验通常用于产品可靠性分析。本文主要研究了恒定应力下纵向观测加速退化试验的建模,并提出了模型中参数的最小距离估计器。得到了估计量的相合性和渐近正态性,并通过仿真证明了该估计量在中等样本量下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of accelerated degradation test under constant stress with errors for longitudinal data
In industrial statistics, the degradation test is regularly used in the analysis of product reliability. This paper is focused on the modeling of accelerated degradation test with longitudinal observation under constant stresses with Berkson-type measurement errors, and suggests the minimum distance estimator for the parameters in the model. The consistency and asymptotic normality of the estimator are obtained, and the performance of the estimator for moderate sample sizes is shown by simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信