处理实时传感器数据流,用于3D web可视化

A. Bröring, David Vial, T. Reitz
{"title":"处理实时传感器数据流,用于3D web可视化","authors":"A. Bröring, David Vial, T. Reitz","doi":"10.1145/2676552.2676556","DOIUrl":null,"url":null,"abstract":"Today, myriads of sensors are surrounding us. Their usage ranges from environmental monitoring (e.g., weather and air quality), over sensor-equipped smart buildings, to the quantified self and other human observing applications. The data streams produced by such sensors often update with high frequencies, resulting in large data volumes. Being able to analyze those real-time sensor data streams requires efficient visualization techniques. In our work, we explore how 3D visualizations can be used to extend the available information space. More specifically, we present an approach for processing real-time sensor data streams to enable scalable Web-based 3D visualizations. Based on an event-driven architecture, our key contribution is the presentation of three processing patterns to optimize transmission of sensor data streams to 3D Web clients.","PeriodicalId":272840,"journal":{"name":"Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming","volume":"651 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Processing real-time sensor data streams for 3D web visualization\",\"authors\":\"A. Bröring, David Vial, T. Reitz\",\"doi\":\"10.1145/2676552.2676556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, myriads of sensors are surrounding us. Their usage ranges from environmental monitoring (e.g., weather and air quality), over sensor-equipped smart buildings, to the quantified self and other human observing applications. The data streams produced by such sensors often update with high frequencies, resulting in large data volumes. Being able to analyze those real-time sensor data streams requires efficient visualization techniques. In our work, we explore how 3D visualizations can be used to extend the available information space. More specifically, we present an approach for processing real-time sensor data streams to enable scalable Web-based 3D visualizations. Based on an event-driven architecture, our key contribution is the presentation of three processing patterns to optimize transmission of sensor data streams to 3D Web clients.\",\"PeriodicalId\":272840,\"journal\":{\"name\":\"Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming\",\"volume\":\"651 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2676552.2676556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676552.2676556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

今天,我们周围有无数的传感器。它们的使用范围从环境监测(例如天气和空气质量),到配备传感器的智能建筑,再到量化自我和其他人类观察应用。这些传感器产生的数据流经常以高频率更新,导致数据量大。能够分析这些实时传感器数据流需要有效的可视化技术。在我们的工作中,我们探索如何使用3D可视化来扩展可用的信息空间。更具体地说,我们提出了一种处理实时传感器数据流的方法,以实现可扩展的基于web的3D可视化。基于事件驱动的体系结构,我们的主要贡献是提出了三种处理模式,以优化传感器数据流到3D Web客户端的传输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Processing real-time sensor data streams for 3D web visualization
Today, myriads of sensors are surrounding us. Their usage ranges from environmental monitoring (e.g., weather and air quality), over sensor-equipped smart buildings, to the quantified self and other human observing applications. The data streams produced by such sensors often update with high frequencies, resulting in large data volumes. Being able to analyze those real-time sensor data streams requires efficient visualization techniques. In our work, we explore how 3D visualizations can be used to extend the available information space. More specifically, we present an approach for processing real-time sensor data streams to enable scalable Web-based 3D visualizations. Based on an event-driven architecture, our key contribution is the presentation of three processing patterns to optimize transmission of sensor data streams to 3D Web clients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信