相衬显微镜图像下细胞检测的丰富特征层次

Fan Deng, Haigen Hu, Shengyong Chen, Q. Guan, Yijie Zou
{"title":"相衬显微镜图像下细胞检测的丰富特征层次","authors":"Fan Deng, Haigen Hu, Shengyong Chen, Q. Guan, Yijie Zou","doi":"10.1109/ICICIP.2015.7388195","DOIUrl":null,"url":null,"abstract":"R-CNN (region-convolutional neural network) has recently achieved very outstanding results in variety of visual detecting fields, and its function of object-proposal-generation can achieve effective training models by using as small samples as possible in the field of machine learning. In this paper, a modified R-CNN is proposed and applied to detect cells under phase contrast microscopy images by adopting multiple object-proposal-generations instead of a single one to extract candidate regions. The results show that the proposed method can obtain better performance than the traditional method by using a single object-proposal-generation.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"68 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rich feature hierarchies for cell detecting under phase contrast microscopy images\",\"authors\":\"Fan Deng, Haigen Hu, Shengyong Chen, Q. Guan, Yijie Zou\",\"doi\":\"10.1109/ICICIP.2015.7388195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"R-CNN (region-convolutional neural network) has recently achieved very outstanding results in variety of visual detecting fields, and its function of object-proposal-generation can achieve effective training models by using as small samples as possible in the field of machine learning. In this paper, a modified R-CNN is proposed and applied to detect cells under phase contrast microscopy images by adopting multiple object-proposal-generations instead of a single one to extract candidate regions. The results show that the proposed method can obtain better performance than the traditional method by using a single object-proposal-generation.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"68 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

R-CNN (region-convolutional neural network,区域卷积神经网络)最近在各种视觉检测领域都取得了非常突出的成果,它的object-proposal-generation功能可以在机器学习领域使用尽可能小的样本来实现有效的训练模型。本文提出了一种改进的R-CNN算法,并将其应用于相衬显微镜图像下的细胞检测,采用多代对象提议而不是单代对象提议来提取候选区域。结果表明,该方法比传统的单目标提议生成方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rich feature hierarchies for cell detecting under phase contrast microscopy images
R-CNN (region-convolutional neural network) has recently achieved very outstanding results in variety of visual detecting fields, and its function of object-proposal-generation can achieve effective training models by using as small samples as possible in the field of machine learning. In this paper, a modified R-CNN is proposed and applied to detect cells under phase contrast microscopy images by adopting multiple object-proposal-generations instead of a single one to extract candidate regions. The results show that the proposed method can obtain better performance than the traditional method by using a single object-proposal-generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信