最小正向检查

Michael J. Dent, Robert E. Mercer
{"title":"最小正向检查","authors":"Michael J. Dent, Robert E. Mercer","doi":"10.1109/TAI.1994.346460","DOIUrl":null,"url":null,"abstract":"Forward Checking (FC) is a highly regarded complete search algorithm used to solve constraint satisfaction problems. In this paper a lazy variant of FC called minimal forward checking (MFC) is introduced. MFC is a natural marriage of incremental FC and backchecking. Given a variable selection heuristic which does not depend on domain size MPC's worst case performance on any CSP instance is the number of constraint checks performed by FC. Experiments using hard random problems are presented which show that MFC outperforms FC especially for problems with large domain sizes and/or a large number of variables.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"Minimal forward checking\",\"authors\":\"Michael J. Dent, Robert E. Mercer\",\"doi\":\"10.1109/TAI.1994.346460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forward Checking (FC) is a highly regarded complete search algorithm used to solve constraint satisfaction problems. In this paper a lazy variant of FC called minimal forward checking (MFC) is introduced. MFC is a natural marriage of incremental FC and backchecking. Given a variable selection heuristic which does not depend on domain size MPC's worst case performance on any CSP instance is the number of constraint checks performed by FC. Experiments using hard random problems are presented which show that MFC outperforms FC especially for problems with large domain sizes and/or a large number of variables.<<ETX>>\",\"PeriodicalId\":262014,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1994.346460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

前向检查(FC)是一种备受推崇的用于解决约束满足问题的完全搜索算法。本文介绍了最小前向检查(MFC)的一种惰性形式。MFC是增量FC和回溯的自然结合。给定一个不依赖于域大小的变量选择启发式算法,MPC在任何CSP实例上的最差情况性能是FC执行的约束检查次数。用硬随机问题进行的实验表明,MFC算法在具有大域大小和/或大量变量的问题上优于FC算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal forward checking
Forward Checking (FC) is a highly regarded complete search algorithm used to solve constraint satisfaction problems. In this paper a lazy variant of FC called minimal forward checking (MFC) is introduced. MFC is a natural marriage of incremental FC and backchecking. Given a variable selection heuristic which does not depend on domain size MPC's worst case performance on any CSP instance is the number of constraint checks performed by FC. Experiments using hard random problems are presented which show that MFC outperforms FC especially for problems with large domain sizes and/or a large number of variables.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信