Foggy-DOTA:用于航空图像中目标检测的恶劣天气数据集

Nguyen D. Vo, Phuc Nguyen, Thang Truong, Hoan C. Nguyen, Khang Nguyen
{"title":"Foggy-DOTA:用于航空图像中目标检测的恶劣天气数据集","authors":"Nguyen D. Vo, Phuc Nguyen, Thang Truong, Hoan C. Nguyen, Khang Nguyen","doi":"10.1109/NICS56915.2022.10013441","DOIUrl":null,"url":null,"abstract":"Nowadays, object detection in aerial images in adverse weather, especially in foggy scenes becoming very challenging and incredibly practical. Furthermore, fog and clouds usually appear in the majority of aerial images captured via drones everywhere on Earth, especially in the early morning. Understanding the need for qualified deep learning approaches, we propose a Foggy-DOTA dataset inheriting from the original DOTA dataset and then empirically evaluate it on multiple State-of-the-art methods. After having conducted lots of experiments on some well-known baselines, ReDet is the highest method achieving 76.680 mAP on the original DOTA, only 74.194 mAP on our Foggy-DOTA dataset (60.706 mAP if trained on DOTA). On the other hand, S2ANet and RoI Transformer achieve 74.190, 76,09 mAP on the original DOTA, only yield 71.629 and 73.381 mAP on our Foggy-DOTA dataset (46.503 and 40.297 mAP - significantly low if trained on DOTA), respectively. Our work provides comprehensive statistical evaluation being an essential baseline for future object detection research.","PeriodicalId":381028,"journal":{"name":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foggy-DOTA: An adverse weather dataset for object detection in aerial images\",\"authors\":\"Nguyen D. Vo, Phuc Nguyen, Thang Truong, Hoan C. Nguyen, Khang Nguyen\",\"doi\":\"10.1109/NICS56915.2022.10013441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, object detection in aerial images in adverse weather, especially in foggy scenes becoming very challenging and incredibly practical. Furthermore, fog and clouds usually appear in the majority of aerial images captured via drones everywhere on Earth, especially in the early morning. Understanding the need for qualified deep learning approaches, we propose a Foggy-DOTA dataset inheriting from the original DOTA dataset and then empirically evaluate it on multiple State-of-the-art methods. After having conducted lots of experiments on some well-known baselines, ReDet is the highest method achieving 76.680 mAP on the original DOTA, only 74.194 mAP on our Foggy-DOTA dataset (60.706 mAP if trained on DOTA). On the other hand, S2ANet and RoI Transformer achieve 74.190, 76,09 mAP on the original DOTA, only yield 71.629 and 73.381 mAP on our Foggy-DOTA dataset (46.503 and 40.297 mAP - significantly low if trained on DOTA), respectively. Our work provides comprehensive statistical evaluation being an essential baseline for future object detection research.\",\"PeriodicalId\":381028,\"journal\":{\"name\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"255 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS56915.2022.10013441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS56915.2022.10013441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,在恶劣天气下,特别是在雾天场景下,航空图像的目标检测变得非常具有挑战性和难以置信的实用。此外,雾和云通常出现在地球上各地无人机拍摄的大多数航空图像中,特别是在清晨。了解对深度学习方法的需求,我们提出了一个继承原始DOTA数据集的Foggy-DOTA数据集,然后在多种最先进的方法上对其进行经验评估。在一些知名的基线上进行了大量的实验后,ReDet是在原始DOTA上达到76.680 mAP的最高方法,在我们的Foggy-DOTA数据集上只有74.194 mAP(如果在DOTA上训练,则为60.706 mAP)。另一方面,S2ANet和RoI Transformer在原始DOTA上的mAP值分别为74.190、76和09,在我们的Foggy-DOTA数据集上的mAP值分别为71.629和73.381(如果在DOTA上训练,mAP值分别为46.503和40.297,非常低)。我们的工作提供了全面的统计评估,作为未来目标检测研究的基本基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foggy-DOTA: An adverse weather dataset for object detection in aerial images
Nowadays, object detection in aerial images in adverse weather, especially in foggy scenes becoming very challenging and incredibly practical. Furthermore, fog and clouds usually appear in the majority of aerial images captured via drones everywhere on Earth, especially in the early morning. Understanding the need for qualified deep learning approaches, we propose a Foggy-DOTA dataset inheriting from the original DOTA dataset and then empirically evaluate it on multiple State-of-the-art methods. After having conducted lots of experiments on some well-known baselines, ReDet is the highest method achieving 76.680 mAP on the original DOTA, only 74.194 mAP on our Foggy-DOTA dataset (60.706 mAP if trained on DOTA). On the other hand, S2ANet and RoI Transformer achieve 74.190, 76,09 mAP on the original DOTA, only yield 71.629 and 73.381 mAP on our Foggy-DOTA dataset (46.503 and 40.297 mAP - significantly low if trained on DOTA), respectively. Our work provides comprehensive statistical evaluation being an essential baseline for future object detection research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信