线性和非线性分数阶偏微分方程组数值计算的分数阶降阶微分变换方法

B. K. Singh
{"title":"线性和非线性分数阶偏微分方程组数值计算的分数阶降阶微分变换方法","authors":"B. K. Singh","doi":"10.12816/0033742","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative numerical computation of a system of linear and nonlinear fractional partial differential equations obtained by employing fractional reduced differential transform method (FRDTM), where Caputo type fractional derivative is taken. The effectiveness and convergence of FRDTM is tested by means of four problems, which indicate the validity and great potential of the FRDTM for solving system of fractional partial differential equations.","PeriodicalId":210748,"journal":{"name":"International Journal of Open Problems in Computer Science and Mathematics","volume":"1154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Fractional Reduced Differential Transform Method for Numerical Computation of a System of Linear and Nonlinear Fractional Partial Differential Equations\",\"authors\":\"B. K. Singh\",\"doi\":\"10.12816/0033742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an alternative numerical computation of a system of linear and nonlinear fractional partial differential equations obtained by employing fractional reduced differential transform method (FRDTM), where Caputo type fractional derivative is taken. The effectiveness and convergence of FRDTM is tested by means of four problems, which indicate the validity and great potential of the FRDTM for solving system of fractional partial differential equations.\",\"PeriodicalId\":210748,\"journal\":{\"name\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"volume\":\"1154 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Problems in Computer Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12816/0033742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Problems in Computer Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12816/0033742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文给出了用分数阶约微分变换法(FRDTM)求得的一类线性和非线性分数阶偏微分方程组的替代数值计算,其中取Caputo型分数阶导数。通过四个问题验证了FRDTM的有效性和收敛性,表明了FRDTM求解分数阶偏微分方程组的有效性和巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Reduced Differential Transform Method for Numerical Computation of a System of Linear and Nonlinear Fractional Partial Differential Equations
This paper presents an alternative numerical computation of a system of linear and nonlinear fractional partial differential equations obtained by employing fractional reduced differential transform method (FRDTM), where Caputo type fractional derivative is taken. The effectiveness and convergence of FRDTM is tested by means of four problems, which indicate the validity and great potential of the FRDTM for solving system of fractional partial differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信