统计查询答案的逻辑

Hubie Chen, S. Mengel
{"title":"统计查询答案的逻辑","authors":"Hubie Chen, S. Mengel","doi":"10.1109/LICS.2017.8005085","DOIUrl":null,"url":null,"abstract":"We consider the problem of counting the number of answers to a first-order formula on a finite structure. We present and study an extension of first-order logic in which algorithms for this counting problem can be naturally and conveniently expressed, in senses that are made precise and that are motivated by the wish to understand tractable cases of the counting problem.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The logic of counting query answers\",\"authors\":\"Hubie Chen, S. Mengel\",\"doi\":\"10.1109/LICS.2017.8005085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of counting the number of answers to a first-order formula on a finite structure. We present and study an extension of first-order logic in which algorithms for this counting problem can be naturally and conveniently expressed, in senses that are made precise and that are motivated by the wish to understand tractable cases of the counting problem.\",\"PeriodicalId\":313950,\"journal\":{\"name\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2017.8005085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

考虑有限结构上一阶公式的解的个数问题。我们提出并研究了一阶逻辑的扩展,其中该计数问题的算法可以自然而方便地表达,其意义是精确的,并且是出于理解计数问题的可处理情况的愿望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The logic of counting query answers
We consider the problem of counting the number of answers to a first-order formula on a finite structure. We present and study an extension of first-order logic in which algorithms for this counting problem can be naturally and conveniently expressed, in senses that are made precise and that are motivated by the wish to understand tractable cases of the counting problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信