学习离线签名验证的广义表示

Xianmu Cairang, Duojie Zhaxi, Xiaolong Yang, Yan Hou, Qijun Zhao, Dingguo Gao, Pubu Danzeng, Dorji Gesang
{"title":"学习离线签名验证的广义表示","authors":"Xianmu Cairang, Duojie Zhaxi, Xiaolong Yang, Yan Hou, Qijun Zhao, Dingguo Gao, Pubu Danzeng, Dorji Gesang","doi":"10.1109/IJCNN55064.2022.9892224","DOIUrl":null,"url":null,"abstract":"Current offline signature verification methods based on deep learning have achieved promising results, but these methods degrade greatly in cross-domain settings. An efficient offline signature verification model with both high performance and for deployment cross-domain without any adaptation. In this paper, we propose a novel approach to learning generalisable representations for offline signature verification. Firstly, we use the Siamese network combined with Triplet loss and Cross Entropy (CE) loss to learn discriminative features. Secondly, we introduce Instance Normalization (IN) into the network to cope with cross-domain discrepancies and propose an Inference Layer Normalization Neck (ILNNeck) module to further improve model generalization. We evalute the method on our self-collected Multilingual Signature dataset (MLSig) and three public datasets: BHSig-H, BHSig-B, and CEDAR. Results show that while our method achieves comparable results in single-domain setting, it is obviously superior to state-of-the-art methods in cross-domain setting.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Generalisable Representations for Offline Signature Verification\",\"authors\":\"Xianmu Cairang, Duojie Zhaxi, Xiaolong Yang, Yan Hou, Qijun Zhao, Dingguo Gao, Pubu Danzeng, Dorji Gesang\",\"doi\":\"10.1109/IJCNN55064.2022.9892224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current offline signature verification methods based on deep learning have achieved promising results, but these methods degrade greatly in cross-domain settings. An efficient offline signature verification model with both high performance and for deployment cross-domain without any adaptation. In this paper, we propose a novel approach to learning generalisable representations for offline signature verification. Firstly, we use the Siamese network combined with Triplet loss and Cross Entropy (CE) loss to learn discriminative features. Secondly, we introduce Instance Normalization (IN) into the network to cope with cross-domain discrepancies and propose an Inference Layer Normalization Neck (ILNNeck) module to further improve model generalization. We evalute the method on our self-collected Multilingual Signature dataset (MLSig) and three public datasets: BHSig-H, BHSig-B, and CEDAR. Results show that while our method achieves comparable results in single-domain setting, it is obviously superior to state-of-the-art methods in cross-domain setting.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9892224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前基于深度学习的离线签名验证方法已经取得了不错的效果,但这些方法在跨域环境下性能下降很大。一种高效的离线签名验证模型,具有高性能、跨域部署、无需自适应的特点。在本文中,我们提出了一种学习脱机签名验证的广义表示的新方法。首先,我们使用Siamese网络结合三重损失和交叉熵(CE)损失学习判别特征。其次,我们在网络中引入实例归一化(IN)来处理跨域差异,并提出了推理层归一化颈(ILNNeck)模块来进一步提高模型的泛化能力。我们在自己收集的多语言签名数据集(MLSig)和三个公共数据集(BHSig-H、BHSig-B和CEDAR)上对该方法进行了评估。结果表明,虽然我们的方法在单域环境下取得了相当的结果,但在跨域环境下明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Generalisable Representations for Offline Signature Verification
Current offline signature verification methods based on deep learning have achieved promising results, but these methods degrade greatly in cross-domain settings. An efficient offline signature verification model with both high performance and for deployment cross-domain without any adaptation. In this paper, we propose a novel approach to learning generalisable representations for offline signature verification. Firstly, we use the Siamese network combined with Triplet loss and Cross Entropy (CE) loss to learn discriminative features. Secondly, we introduce Instance Normalization (IN) into the network to cope with cross-domain discrepancies and propose an Inference Layer Normalization Neck (ILNNeck) module to further improve model generalization. We evalute the method on our self-collected Multilingual Signature dataset (MLSig) and three public datasets: BHSig-H, BHSig-B, and CEDAR. Results show that while our method achieves comparable results in single-domain setting, it is obviously superior to state-of-the-art methods in cross-domain setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信