应用伽玛波段哈拉里克特征检测癫痫发作的ROC分析

M. Sameer, A. Gupta, Chinmay Chakraborty, B. Gupta
{"title":"应用伽玛波段哈拉里克特征检测癫痫发作的ROC分析","authors":"M. Sameer, A. Gupta, Chinmay Chakraborty, B. Gupta","doi":"10.1109/NCC48643.2020.9056027","DOIUrl":null,"url":null,"abstract":"In this study, gamma band (30–60 Hz) is used for detection of epileptical seizures using Haralick features. Most of the previous methods are based on the whole frequency spectrum for detection. This work use only high frequency electroencephalogram (EEG) subband for seizure detection using image descriptors. To convert one dimensional EEG data into image Short-time Fourier transform (STFT) has been used. Gamma band is cut from the time frequency (t-f) plane and Haralick features is used as image descriptors to fed in the decision tree classifier. The results have been evaluated using receiver operating characteristic (ROC) analysis. Maximum area under curve (AUC) of 0.96 is obtained to classify between seizures and healthy. Advantage of this work is rather using whole frequency band it utilizes only a particular band which reduces computational load. It also shows the utility of gamma band in seizure detection.","PeriodicalId":183772,"journal":{"name":"2020 National Conference on Communications (NCC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"ROC Analysis for detection of Epileptical Seizures using Haralick features of Gamma band\",\"authors\":\"M. Sameer, A. Gupta, Chinmay Chakraborty, B. Gupta\",\"doi\":\"10.1109/NCC48643.2020.9056027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, gamma band (30–60 Hz) is used for detection of epileptical seizures using Haralick features. Most of the previous methods are based on the whole frequency spectrum for detection. This work use only high frequency electroencephalogram (EEG) subband for seizure detection using image descriptors. To convert one dimensional EEG data into image Short-time Fourier transform (STFT) has been used. Gamma band is cut from the time frequency (t-f) plane and Haralick features is used as image descriptors to fed in the decision tree classifier. The results have been evaluated using receiver operating characteristic (ROC) analysis. Maximum area under curve (AUC) of 0.96 is obtained to classify between seizures and healthy. Advantage of this work is rather using whole frequency band it utilizes only a particular band which reduces computational load. It also shows the utility of gamma band in seizure detection.\",\"PeriodicalId\":183772,\"journal\":{\"name\":\"2020 National Conference on Communications (NCC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC48643.2020.9056027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC48643.2020.9056027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在这项研究中,伽马波段(30-60赫兹)被用于使用哈拉里克特征检测癫痫发作。以往的方法大多是基于全频谱进行检测。这项工作只使用高频脑电图(EEG)子带检测癫痫发作使用图像描述符。利用短时傅里叶变换(STFT)将一维脑电信号转换成图像。从时频(t-f)平面截取伽马波段,并将哈拉里克特征作为图像描述符馈送到决策树分类器中。使用受试者工作特征(ROC)分析对结果进行评价。最大曲线下面积(AUC)为0.96,用于癫痫发作与健康的分类。这项工作的优点是利用整个频带,而不是利用特定的频带,从而减少了计算负荷。它还显示了伽马波段在癫痫检测中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ROC Analysis for detection of Epileptical Seizures using Haralick features of Gamma band
In this study, gamma band (30–60 Hz) is used for detection of epileptical seizures using Haralick features. Most of the previous methods are based on the whole frequency spectrum for detection. This work use only high frequency electroencephalogram (EEG) subband for seizure detection using image descriptors. To convert one dimensional EEG data into image Short-time Fourier transform (STFT) has been used. Gamma band is cut from the time frequency (t-f) plane and Haralick features is used as image descriptors to fed in the decision tree classifier. The results have been evaluated using receiver operating characteristic (ROC) analysis. Maximum area under curve (AUC) of 0.96 is obtained to classify between seizures and healthy. Advantage of this work is rather using whole frequency band it utilizes only a particular band which reduces computational load. It also shows the utility of gamma band in seizure detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信