基于神经进化的增强拓扑(NEAT)短期负荷预测研究

C. S. Özveren, A. Sapeluk, A. Birch
{"title":"基于神经进化的增强拓扑(NEAT)短期负荷预测研究","authors":"C. S. Özveren, A. Sapeluk, A. Birch","doi":"10.1109/UPEC.2014.6934819","DOIUrl":null,"url":null,"abstract":"Different ANN architectures using back propagation can forecast the electricity demand at half-hourly intervals for up to 24 hours ahead with various degrees of success that is highly dependent on mainly trial and error heuristic tailoring of the architecture and the various learning parameters to cover the solution space. This paper presents the results of an investigation of an approach in the neuro-evolution technique to the short term electricity forecasting (STFL) problem. This algorithm is called Neuro-Evolution through Augmenting Topologies (NEAT). We have chosen the methodology in the paper to be a simple, generic, adaptive, robust, and easy to implement approach, requiring modest computing resources, for the prediction of the electricity demand.","PeriodicalId":414838,"journal":{"name":"2014 49th International Universities Power Engineering Conference (UPEC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An investigation into using neuro-evolution of Augmenting Topologies (NEAT) for short term load forecasting (STFL)\",\"authors\":\"C. S. Özveren, A. Sapeluk, A. Birch\",\"doi\":\"10.1109/UPEC.2014.6934819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different ANN architectures using back propagation can forecast the electricity demand at half-hourly intervals for up to 24 hours ahead with various degrees of success that is highly dependent on mainly trial and error heuristic tailoring of the architecture and the various learning parameters to cover the solution space. This paper presents the results of an investigation of an approach in the neuro-evolution technique to the short term electricity forecasting (STFL) problem. This algorithm is called Neuro-Evolution through Augmenting Topologies (NEAT). We have chosen the methodology in the paper to be a simple, generic, adaptive, robust, and easy to implement approach, requiring modest computing resources, for the prediction of the electricity demand.\",\"PeriodicalId\":414838,\"journal\":{\"name\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2014.6934819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 49th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2014.6934819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用反向传播的不同人工神经网络架构可以预测未来24小时内每半小时的电力需求,并取得不同程度的成功,这主要依赖于架构的试错式剪裁和各种学习参数来覆盖解决方案空间。本文介绍了神经进化技术中短期电力预测(STFL)问题的研究结果。这种算法被称为通过增强拓扑的神经进化(NEAT)。我们在论文中选择的方法是一种简单、通用、自适应、健壮且易于实现的方法,需要适度的计算资源,用于预测电力需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigation into using neuro-evolution of Augmenting Topologies (NEAT) for short term load forecasting (STFL)
Different ANN architectures using back propagation can forecast the electricity demand at half-hourly intervals for up to 24 hours ahead with various degrees of success that is highly dependent on mainly trial and error heuristic tailoring of the architecture and the various learning parameters to cover the solution space. This paper presents the results of an investigation of an approach in the neuro-evolution technique to the short term electricity forecasting (STFL) problem. This algorithm is called Neuro-Evolution through Augmenting Topologies (NEAT). We have chosen the methodology in the paper to be a simple, generic, adaptive, robust, and easy to implement approach, requiring modest computing resources, for the prediction of the electricity demand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信