在云上部署Pub/Sub的经济有效的资源分配

Vinay Setty, R. Vitenberg, Gunnar Kreitz, G. Urdaneta, M. Steen
{"title":"在云上部署Pub/Sub的经济有效的资源分配","authors":"Vinay Setty, R. Vitenberg, Gunnar Kreitz, G. Urdaneta, M. Steen","doi":"10.1109/ICDCS.2014.63","DOIUrl":null,"url":null,"abstract":"Publish/subscribe (pub/sub) is a popular communication paradigm in the design of large-scale distributed systems. A fundamental challenge in deploying pub/sub systems on a data center or a cloud infrastructure is efficient and cost-effective resource allocation that would allow delivery of notifications to all subscribers. In this paper, we provide answers to the following three fundamental questions: Given a pub/sub workload, (1) what is the minimum amount of resources needed to satisfy all the subscribers, (2) what is a cost-effective way to allocate resources for the given workload, and (3) what is the cost of hosting it on a public Infrastructure-as-a-Service (IaaS) provider like Amazon EC2. To answer these questions, we formulate a problem coined Minimum Cost Subscriber Satisfaction (MCSS). We prove MCSS to be NP-hard and provide an efficient heuristic solution based on a combination of optimizations. We evaluate the solution experimentally using real traces from Spotify and Twitter along with a pricing model from Amazon. We show the impact of each optimization using a naive solution as the baseline. Using a variety of practical scenarios for each dataset, we also show that our solution scales well for millions of subscribers and runs fast.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Cost-Effective Resource Allocation for Deploying Pub/Sub on Cloud\",\"authors\":\"Vinay Setty, R. Vitenberg, Gunnar Kreitz, G. Urdaneta, M. Steen\",\"doi\":\"10.1109/ICDCS.2014.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Publish/subscribe (pub/sub) is a popular communication paradigm in the design of large-scale distributed systems. A fundamental challenge in deploying pub/sub systems on a data center or a cloud infrastructure is efficient and cost-effective resource allocation that would allow delivery of notifications to all subscribers. In this paper, we provide answers to the following three fundamental questions: Given a pub/sub workload, (1) what is the minimum amount of resources needed to satisfy all the subscribers, (2) what is a cost-effective way to allocate resources for the given workload, and (3) what is the cost of hosting it on a public Infrastructure-as-a-Service (IaaS) provider like Amazon EC2. To answer these questions, we formulate a problem coined Minimum Cost Subscriber Satisfaction (MCSS). We prove MCSS to be NP-hard and provide an efficient heuristic solution based on a combination of optimizations. We evaluate the solution experimentally using real traces from Spotify and Twitter along with a pricing model from Amazon. We show the impact of each optimization using a naive solution as the baseline. Using a variety of practical scenarios for each dataset, we also show that our solution scales well for millions of subscribers and runs fast.\",\"PeriodicalId\":170186,\"journal\":{\"name\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2014.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

发布/订阅(pub/sub)是大规模分布式系统设计中流行的通信模式。在数据中心或云基础设施上部署发布/订阅系统的一个基本挑战是高效且经济地分配资源,以便向所有订阅者交付通知。在本文中,我们提供了以下三个基本问题的答案:给定一个发布/订阅工作负载,(1)满足所有订阅者所需的最小资源量是多少,(2)为给定工作负载分配资源的经济有效方法是什么,以及(3)将其托管在公共基础设施即服务(IaaS)提供商(如Amazon EC2)上的成本是多少。为了回答这些问题,我们提出了一个问题,即最低成本用户满意度(MCSS)。我们证明了MCSS是np困难的,并提供了一个基于优化组合的有效启发式解决方案。我们使用Spotify和Twitter的真实痕迹以及亚马逊的定价模型对解决方案进行了实验评估。我们使用一个简单的解决方案作为基线来展示每个优化的影响。通过对每个数据集使用各种实际场景,我们还表明,我们的解决方案可以很好地扩展到数百万订阅者,并且运行速度很快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cost-Effective Resource Allocation for Deploying Pub/Sub on Cloud
Publish/subscribe (pub/sub) is a popular communication paradigm in the design of large-scale distributed systems. A fundamental challenge in deploying pub/sub systems on a data center or a cloud infrastructure is efficient and cost-effective resource allocation that would allow delivery of notifications to all subscribers. In this paper, we provide answers to the following three fundamental questions: Given a pub/sub workload, (1) what is the minimum amount of resources needed to satisfy all the subscribers, (2) what is a cost-effective way to allocate resources for the given workload, and (3) what is the cost of hosting it on a public Infrastructure-as-a-Service (IaaS) provider like Amazon EC2. To answer these questions, we formulate a problem coined Minimum Cost Subscriber Satisfaction (MCSS). We prove MCSS to be NP-hard and provide an efficient heuristic solution based on a combination of optimizations. We evaluate the solution experimentally using real traces from Spotify and Twitter along with a pricing model from Amazon. We show the impact of each optimization using a naive solution as the baseline. Using a variety of practical scenarios for each dataset, we also show that our solution scales well for millions of subscribers and runs fast.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信