控制图模式分类中特征提取的图像处理方法

K. Lavangnananda, Apivadee Piyatumrong
{"title":"控制图模式分类中特征提取的图像处理方法","authors":"K. Lavangnananda, Apivadee Piyatumrong","doi":"10.1109/SMCIA.2005.1466953","DOIUrl":null,"url":null,"abstract":"Control chart patterns can be used to determine behavior of system. They are vital in process control as they are used in detecting the abnormalities which may occur. Accurate identification of these charts is necessary to the efficiency and reduction of system troubleshooting time. The accuracy of the classification depends largely on how noisy the signals in these charts are. If their noise ratio is very high, this suggests that reliable classification is almost impossible. One of the major difficulties lies in differentiation between increasing and decreasing patterns especially where gradients of inclination and declination are small. This paper describes an improvement in identifying highly noisy control chart patterns by utilizing features extraction in classification using neural networks in previous works. Features, which were founded useful for the classification, are mean, standard deviation, skewness, and kurtosis. The improvement can be summarized into two factors, the introduction of two more useful features, slope and Pearson correlation coefficient, and the additional transformation derived from the original signal. This work yields better performance than previous works which used the same data set by increasing the overall accuracy from 83.30% to 90.47%.","PeriodicalId":283950,"journal":{"name":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Image processing approach to features extraction in classification of control chart patterns\",\"authors\":\"K. Lavangnananda, Apivadee Piyatumrong\",\"doi\":\"10.1109/SMCIA.2005.1466953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control chart patterns can be used to determine behavior of system. They are vital in process control as they are used in detecting the abnormalities which may occur. Accurate identification of these charts is necessary to the efficiency and reduction of system troubleshooting time. The accuracy of the classification depends largely on how noisy the signals in these charts are. If their noise ratio is very high, this suggests that reliable classification is almost impossible. One of the major difficulties lies in differentiation between increasing and decreasing patterns especially where gradients of inclination and declination are small. This paper describes an improvement in identifying highly noisy control chart patterns by utilizing features extraction in classification using neural networks in previous works. Features, which were founded useful for the classification, are mean, standard deviation, skewness, and kurtosis. The improvement can be summarized into two factors, the introduction of two more useful features, slope and Pearson correlation coefficient, and the additional transformation derived from the original signal. This work yields better performance than previous works which used the same data set by increasing the overall accuracy from 83.30% to 90.47%.\",\"PeriodicalId\":283950,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.2005.1466953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2005.1466953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

控制图模式可以用来确定系统的行为。它们在过程控制中是至关重要的,因为它们用于检测可能发生的异常。准确识别这些图表对于提高效率和减少系统故障排除时间是必要的。分类的准确性在很大程度上取决于这些图表中信号的噪声有多大。如果它们的噪声比非常高,这表明可靠的分类几乎是不可能的。主要困难之一在于区分增加和减少的模式,特别是在倾角和赤纬梯度很小的地方。本文描述了在以前的工作中利用神经网络分类中的特征提取来识别高噪声控制图模式的改进。对分类有用的特征是均值、标准差、偏度和峰度。改进可以归结为两个因素,引入了两个更有用的特征,斜率和Pearson相关系数,以及从原始信号导出的附加变换。与使用相同数据集的先前工作相比,该工作的总体精度从83.30%提高到90.47%,取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image processing approach to features extraction in classification of control chart patterns
Control chart patterns can be used to determine behavior of system. They are vital in process control as they are used in detecting the abnormalities which may occur. Accurate identification of these charts is necessary to the efficiency and reduction of system troubleshooting time. The accuracy of the classification depends largely on how noisy the signals in these charts are. If their noise ratio is very high, this suggests that reliable classification is almost impossible. One of the major difficulties lies in differentiation between increasing and decreasing patterns especially where gradients of inclination and declination are small. This paper describes an improvement in identifying highly noisy control chart patterns by utilizing features extraction in classification using neural networks in previous works. Features, which were founded useful for the classification, are mean, standard deviation, skewness, and kurtosis. The improvement can be summarized into two factors, the introduction of two more useful features, slope and Pearson correlation coefficient, and the additional transformation derived from the original signal. This work yields better performance than previous works which used the same data set by increasing the overall accuracy from 83.30% to 90.47%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信