{"title":"半定规划凸优化随机循环坐标下降的收敛速度分析","authors":"Hadi Abbaszadehpeivasti, E. Klerk, M. Zamani","doi":"10.23952/asvao.5.2023.2.02","DOIUrl":null,"url":null,"abstract":"In this paper, we study randomized and cyclic coordinate descent for convex unconstrained optimization problems. We improve the known convergence rates in some cases by using the numerical semidefinite programming performance estimation method. As a spin-off we provide a method to analyse the worst-case performance of the Gauss-Seidel iterative method for linear systems where the coefficient matrix is positive semidefinite with a positive diagonal.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Convergence rate analysis of randomized and cyclic coordinate descent for convex optimization through semidefinite programming\",\"authors\":\"Hadi Abbaszadehpeivasti, E. Klerk, M. Zamani\",\"doi\":\"10.23952/asvao.5.2023.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study randomized and cyclic coordinate descent for convex unconstrained optimization problems. We improve the known convergence rates in some cases by using the numerical semidefinite programming performance estimation method. As a spin-off we provide a method to analyse the worst-case performance of the Gauss-Seidel iterative method for linear systems where the coefficient matrix is positive semidefinite with a positive diagonal.\",\"PeriodicalId\":362333,\"journal\":{\"name\":\"Applied Set-Valued Analysis and Optimization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Set-Valued Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23952/asvao.5.2023.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.5.2023.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convergence rate analysis of randomized and cyclic coordinate descent for convex optimization through semidefinite programming
In this paper, we study randomized and cyclic coordinate descent for convex unconstrained optimization problems. We improve the known convergence rates in some cases by using the numerical semidefinite programming performance estimation method. As a spin-off we provide a method to analyse the worst-case performance of the Gauss-Seidel iterative method for linear systems where the coefficient matrix is positive semidefinite with a positive diagonal.