{"title":"用于在科学领域中生成关键短语的多任务微调","authors":"Anna Glazkova, Dmitry Morozov","doi":"10.1109/ITNT57377.2023.10139061","DOIUrl":null,"url":null,"abstract":"Automatic selection of keyphrases (keywords) is a major challenge to finding and systematizing scholarly documents. This paper investigates the efficiency of using titles of scientific papers as additional information for keyphrase generation. We propose an approach to multi-task fine-tuning the BART model using control codes1. It is shown that the suggested approach can improve the performance of BART for the task of keyphrase generation. In some cases, the presented model outperforms state-of-the-art models for keyphrase extraction. Moreover, the results have demonstrated that multitask fine-tuning also increases the performance of title generation.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"33 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-task fine-tuning for generating keyphrases in a scientific domain\",\"authors\":\"Anna Glazkova, Dmitry Morozov\",\"doi\":\"10.1109/ITNT57377.2023.10139061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic selection of keyphrases (keywords) is a major challenge to finding and systematizing scholarly documents. This paper investigates the efficiency of using titles of scientific papers as additional information for keyphrase generation. We propose an approach to multi-task fine-tuning the BART model using control codes1. It is shown that the suggested approach can improve the performance of BART for the task of keyphrase generation. In some cases, the presented model outperforms state-of-the-art models for keyphrase extraction. Moreover, the results have demonstrated that multitask fine-tuning also increases the performance of title generation.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"33 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-task fine-tuning for generating keyphrases in a scientific domain
Automatic selection of keyphrases (keywords) is a major challenge to finding and systematizing scholarly documents. This paper investigates the efficiency of using titles of scientific papers as additional information for keyphrase generation. We propose an approach to multi-task fine-tuning the BART model using control codes1. It is shown that the suggested approach can improve the performance of BART for the task of keyphrase generation. In some cases, the presented model outperforms state-of-the-art models for keyphrase extraction. Moreover, the results have demonstrated that multitask fine-tuning also increases the performance of title generation.