用于在科学领域中生成关键短语的多任务微调

Anna Glazkova, Dmitry Morozov
{"title":"用于在科学领域中生成关键短语的多任务微调","authors":"Anna Glazkova, Dmitry Morozov","doi":"10.1109/ITNT57377.2023.10139061","DOIUrl":null,"url":null,"abstract":"Automatic selection of keyphrases (keywords) is a major challenge to finding and systematizing scholarly documents. This paper investigates the efficiency of using titles of scientific papers as additional information for keyphrase generation. We propose an approach to multi-task fine-tuning the BART model using control codes1. It is shown that the suggested approach can improve the performance of BART for the task of keyphrase generation. In some cases, the presented model outperforms state-of-the-art models for keyphrase extraction. Moreover, the results have demonstrated that multitask fine-tuning also increases the performance of title generation.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"33 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-task fine-tuning for generating keyphrases in a scientific domain\",\"authors\":\"Anna Glazkova, Dmitry Morozov\",\"doi\":\"10.1109/ITNT57377.2023.10139061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic selection of keyphrases (keywords) is a major challenge to finding and systematizing scholarly documents. This paper investigates the efficiency of using titles of scientific papers as additional information for keyphrase generation. We propose an approach to multi-task fine-tuning the BART model using control codes1. It is shown that the suggested approach can improve the performance of BART for the task of keyphrase generation. In some cases, the presented model outperforms state-of-the-art models for keyphrase extraction. Moreover, the results have demonstrated that multitask fine-tuning also increases the performance of title generation.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"33 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关键词的自动选择是查找和系统化学术文献的主要挑战。本文研究了利用科技论文标题作为关键字生成附加信息的效率。我们提出了一种使用控制码对BART模型进行多任务微调的方法。结果表明,本文提出的方法可以提高BART在关键字生成任务中的性能。在某些情况下,所提出的模型在关键字提取方面优于最先进的模型。此外,结果表明,多任务微调也提高了标题生成的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-task fine-tuning for generating keyphrases in a scientific domain
Automatic selection of keyphrases (keywords) is a major challenge to finding and systematizing scholarly documents. This paper investigates the efficiency of using titles of scientific papers as additional information for keyphrase generation. We propose an approach to multi-task fine-tuning the BART model using control codes1. It is shown that the suggested approach can improve the performance of BART for the task of keyphrase generation. In some cases, the presented model outperforms state-of-the-art models for keyphrase extraction. Moreover, the results have demonstrated that multitask fine-tuning also increases the performance of title generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信