{"title":"光纤光栅解调的傅里叶变换光谱仪","authors":"N. Anheier, M. Bliss, R. A. Craig","doi":"10.1117/12.323419","DOIUrl":null,"url":null,"abstract":"Pacific Northwest National Laboratory is developing a fiber optic grating sensor demodulator using a low cost static Fourier-transform interferometer. The spectrometer uses a fiber optic source and a plane mirror to form an interferogram in the spatial domain that is recorded by a linear photodiode array detector. Using this instrument with an interferogram fringe spacing of 20 microns provides fiber grating strain resolution of about 700-microstrain.","PeriodicalId":293004,"journal":{"name":"Pacific Northwest Fiber Optic Sensor","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fiber optic grating demodulation using a Fourier-transform spectrometer\",\"authors\":\"N. Anheier, M. Bliss, R. A. Craig\",\"doi\":\"10.1117/12.323419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pacific Northwest National Laboratory is developing a fiber optic grating sensor demodulator using a low cost static Fourier-transform interferometer. The spectrometer uses a fiber optic source and a plane mirror to form an interferogram in the spatial domain that is recorded by a linear photodiode array detector. Using this instrument with an interferogram fringe spacing of 20 microns provides fiber grating strain resolution of about 700-microstrain.\",\"PeriodicalId\":293004,\"journal\":{\"name\":\"Pacific Northwest Fiber Optic Sensor\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Northwest Fiber Optic Sensor\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.323419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Northwest Fiber Optic Sensor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.323419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fiber optic grating demodulation using a Fourier-transform spectrometer
Pacific Northwest National Laboratory is developing a fiber optic grating sensor demodulator using a low cost static Fourier-transform interferometer. The spectrometer uses a fiber optic source and a plane mirror to form an interferogram in the spatial domain that is recorded by a linear photodiode array detector. Using this instrument with an interferogram fringe spacing of 20 microns provides fiber grating strain resolution of about 700-microstrain.