基于智能电网的改进核模糊c均值聚类方法

Shuqi Niu, Zhao Zhang, Xintong Tian, Xueyan Zhao
{"title":"基于智能电网的改进核模糊c均值聚类方法","authors":"Shuqi Niu, Zhao Zhang, Xintong Tian, Xueyan Zhao","doi":"10.1109/WCMEIM56910.2022.10021356","DOIUrl":null,"url":null,"abstract":"The improved kernel fuzzy clustering method is used to classify the load data of the smart grid accurately. It lays a good foundation for the subsequent work of power load forecasting and provides a more efficient, safe, and reliable direction for the operation of the power system. Firstly, the collected power load data is preprocessed to reduce data redundancy and improve data quality. Secondly, the kernel fuzzy C-means clustering algorithm based on particle swarm optimization is used to cluster the load data with the same power consumption characteristics. Finally, the improved kernel fuzzy clustering method is compared with the fuzzy C-means clustering method through a simulation example to verify the effectiveness of this method.","PeriodicalId":202270,"journal":{"name":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Kernel Fuzzy C-Means Clustering Method Based on Smart Grid\",\"authors\":\"Shuqi Niu, Zhao Zhang, Xintong Tian, Xueyan Zhao\",\"doi\":\"10.1109/WCMEIM56910.2022.10021356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improved kernel fuzzy clustering method is used to classify the load data of the smart grid accurately. It lays a good foundation for the subsequent work of power load forecasting and provides a more efficient, safe, and reliable direction for the operation of the power system. Firstly, the collected power load data is preprocessed to reduce data redundancy and improve data quality. Secondly, the kernel fuzzy C-means clustering algorithm based on particle swarm optimization is used to cluster the load data with the same power consumption characteristics. Finally, the improved kernel fuzzy clustering method is compared with the fuzzy C-means clustering method through a simulation example to verify the effectiveness of this method.\",\"PeriodicalId\":202270,\"journal\":{\"name\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCMEIM56910.2022.10021356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCMEIM56910.2022.10021356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用改进的核模糊聚类方法对智能电网的负荷数据进行准确分类。为后续的电力负荷预测工作奠定了良好的基础,为电力系统的运行提供了更加高效、安全、可靠的方向。首先,对采集到的电力负荷数据进行预处理,减少数据冗余,提高数据质量;其次,采用基于粒子群优化的核模糊c均值聚类算法对具有相同功耗特征的负荷数据进行聚类;最后,通过仿真算例将改进的核模糊聚类方法与模糊c均值聚类方法进行了比较,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Kernel Fuzzy C-Means Clustering Method Based on Smart Grid
The improved kernel fuzzy clustering method is used to classify the load data of the smart grid accurately. It lays a good foundation for the subsequent work of power load forecasting and provides a more efficient, safe, and reliable direction for the operation of the power system. Firstly, the collected power load data is preprocessed to reduce data redundancy and improve data quality. Secondly, the kernel fuzzy C-means clustering algorithm based on particle swarm optimization is used to cluster the load data with the same power consumption characteristics. Finally, the improved kernel fuzzy clustering method is compared with the fuzzy C-means clustering method through a simulation example to verify the effectiveness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信