基于外部知识源的场景分类

Esfandiar Zolghadr, B. Furht
{"title":"基于外部知识源的场景分类","authors":"Esfandiar Zolghadr, B. Furht","doi":"10.1109/ISM.2015.85","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a model for scene category recognition using metadata of labeled training dataset. We define a measurement of object-scene relevance and apply it to scene category classification to increase coherence of objects in classification and annotation tasks. We show how our context-based extension of supervised Latent Dirichlet Allocation (LDA) model increases recognition accuracy when feature mix is influenced by our relevancy score. We demonstrate that the proposed approach performs well on LabelMe dataset. Comparison between our purposed approach and state of art semi-supervised clustering algorithms using labeled data shows effectiveness of our approach in interpretation of scenes.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scene Classification Using External Knowledge Source\",\"authors\":\"Esfandiar Zolghadr, B. Furht\",\"doi\":\"10.1109/ISM.2015.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a model for scene category recognition using metadata of labeled training dataset. We define a measurement of object-scene relevance and apply it to scene category classification to increase coherence of objects in classification and annotation tasks. We show how our context-based extension of supervised Latent Dirichlet Allocation (LDA) model increases recognition accuracy when feature mix is influenced by our relevancy score. We demonstrate that the proposed approach performs well on LabelMe dataset. Comparison between our purposed approach and state of art semi-supervised clustering algorithms using labeled data shows effectiveness of our approach in interpretation of scenes.\",\"PeriodicalId\":250353,\"journal\":{\"name\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Multimedia (ISM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2015.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于标记训练数据集元数据的场景分类识别模型。我们定义了一个对象-场景相关性的度量,并将其应用于场景类别分类,以提高分类和注释任务中对象的一致性。我们展示了我们基于上下文的有监督潜在狄利克雷分配(LDA)模型的扩展如何在特征组合受我们的相关性评分影响时提高识别精度。我们证明了所提出的方法在LabelMe数据集上表现良好。我们的目标方法与使用标记数据的半监督聚类算法之间的比较表明,我们的方法在解释场景方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scene Classification Using External Knowledge Source
In this paper, we introduce a model for scene category recognition using metadata of labeled training dataset. We define a measurement of object-scene relevance and apply it to scene category classification to increase coherence of objects in classification and annotation tasks. We show how our context-based extension of supervised Latent Dirichlet Allocation (LDA) model increases recognition accuracy when feature mix is influenced by our relevancy score. We demonstrate that the proposed approach performs well on LabelMe dataset. Comparison between our purposed approach and state of art semi-supervised clustering algorithms using labeled data shows effectiveness of our approach in interpretation of scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信