{"title":"具有潜在碲化铜BSF的高效稳定超薄碲化镉太阳能电池","authors":"Mrinmoy Dey, Maitry Dey, M. Matin, N. Amin","doi":"10.1109/ICECE.2016.7853989","DOIUrl":null,"url":null,"abstract":"CdTe is recognized as leading solar cell for having the feature of low cost, high efficiency and better cell stability. The BSF strategy below the absorber layer of CdTe solar cell showed the possibility of higher power conversion efficiency. In this research work, Copper Telluride (Cu2Te) BSF is used to explore the hidden potentiality of CdTe solar cell at ultra-thin level. It was investigated that the addition of Cu2Te BSF significantly enhanced the cell conversion efficiency to 22.51% (Jsc = 24.26 mA/cm2, FF = 0.875, Voc = 1.06 V) with only 0.8 µm of absorber layer in CdTe solar cell. In addition, the cell stability was improved by adding Cu2Te BSF layer in CdTe solar cell and the temperature co-efficient (TC) was 0.16%/°C which indicated better thermal stability.","PeriodicalId":122930,"journal":{"name":"2016 9th International Conference on Electrical and Computer Engineering (ICECE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"High efficient and stable ultra-thin CdTe solar cell with a potential Copper Telluride BSF\",\"authors\":\"Mrinmoy Dey, Maitry Dey, M. Matin, N. Amin\",\"doi\":\"10.1109/ICECE.2016.7853989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CdTe is recognized as leading solar cell for having the feature of low cost, high efficiency and better cell stability. The BSF strategy below the absorber layer of CdTe solar cell showed the possibility of higher power conversion efficiency. In this research work, Copper Telluride (Cu2Te) BSF is used to explore the hidden potentiality of CdTe solar cell at ultra-thin level. It was investigated that the addition of Cu2Te BSF significantly enhanced the cell conversion efficiency to 22.51% (Jsc = 24.26 mA/cm2, FF = 0.875, Voc = 1.06 V) with only 0.8 µm of absorber layer in CdTe solar cell. In addition, the cell stability was improved by adding Cu2Te BSF layer in CdTe solar cell and the temperature co-efficient (TC) was 0.16%/°C which indicated better thermal stability.\",\"PeriodicalId\":122930,\"journal\":{\"name\":\"2016 9th International Conference on Electrical and Computer Engineering (ICECE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Conference on Electrical and Computer Engineering (ICECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECE.2016.7853989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Conference on Electrical and Computer Engineering (ICECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECE.2016.7853989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High efficient and stable ultra-thin CdTe solar cell with a potential Copper Telluride BSF
CdTe is recognized as leading solar cell for having the feature of low cost, high efficiency and better cell stability. The BSF strategy below the absorber layer of CdTe solar cell showed the possibility of higher power conversion efficiency. In this research work, Copper Telluride (Cu2Te) BSF is used to explore the hidden potentiality of CdTe solar cell at ultra-thin level. It was investigated that the addition of Cu2Te BSF significantly enhanced the cell conversion efficiency to 22.51% (Jsc = 24.26 mA/cm2, FF = 0.875, Voc = 1.06 V) with only 0.8 µm of absorber layer in CdTe solar cell. In addition, the cell stability was improved by adding Cu2Te BSF layer in CdTe solar cell and the temperature co-efficient (TC) was 0.16%/°C which indicated better thermal stability.