{"title":"用系统矩阵的奇异值分解解释线性离散时间系统的行为","authors":"R. Zachery, Shiheng Wang","doi":"10.1109/SSST.1996.493464","DOIUrl":null,"url":null,"abstract":"This study formulates the single-input-single-output (SISO) output controllability problem based on singular value decomposition (SVD) of the system matrix. With the approach, the authors show if any input trajectory is along a right singular vector, the output trajectory will be along the corresponding left singular vector and will mirror the input. In addition, the authors derive a relationship between zero locations and system matrix minimum singular values /spl sigma//sub min/ and pole locations and system matrix maximum singular values, /spl sigma//sub max/ in the linear discrete time problem.","PeriodicalId":135973,"journal":{"name":"Proceedings of 28th Southeastern Symposium on System Theory","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An explanation of linear discrete time system behavior by singular value decomposition of the system matrix\",\"authors\":\"R. Zachery, Shiheng Wang\",\"doi\":\"10.1109/SSST.1996.493464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study formulates the single-input-single-output (SISO) output controllability problem based on singular value decomposition (SVD) of the system matrix. With the approach, the authors show if any input trajectory is along a right singular vector, the output trajectory will be along the corresponding left singular vector and will mirror the input. In addition, the authors derive a relationship between zero locations and system matrix minimum singular values /spl sigma//sub min/ and pole locations and system matrix maximum singular values, /spl sigma//sub max/ in the linear discrete time problem.\",\"PeriodicalId\":135973,\"journal\":{\"name\":\"Proceedings of 28th Southeastern Symposium on System Theory\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 28th Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1996.493464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 28th Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1996.493464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An explanation of linear discrete time system behavior by singular value decomposition of the system matrix
This study formulates the single-input-single-output (SISO) output controllability problem based on singular value decomposition (SVD) of the system matrix. With the approach, the authors show if any input trajectory is along a right singular vector, the output trajectory will be along the corresponding left singular vector and will mirror the input. In addition, the authors derive a relationship between zero locations and system matrix minimum singular values /spl sigma//sub min/ and pole locations and system matrix maximum singular values, /spl sigma//sub max/ in the linear discrete time problem.