Hindmarsh-Rose神经元模型的PWL逼近及其电路实现

F. Bizzarri, D. Linaro, M. Storace
{"title":"Hindmarsh-Rose神经元模型的PWL逼近及其电路实现","authors":"F. Bizzarri, D. Linaro, M. Storace","doi":"10.1109/ECCTD.2007.4529737","DOIUrl":null,"url":null,"abstract":"A two-dimensional piecewise-linear approximation of the Hindmarsh-Rose neuron model is obtained, in view of its circuit implementation. The obtained approximation is checked by varying two bifurcation parameters. The brute-force two-dimensional bifurcation diagram of the original model is compared with the one of the piecewise-linear approximation, showing that the approximation is able to reproduce the main qualitative behaviours (quiescency, spiking, bursting, chaotic dynamics) of the original model.","PeriodicalId":445822,"journal":{"name":"2007 18th European Conference on Circuit Theory and Design","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"PWL approximation of the Hindmarsh-Rose neuron model in view of its circuit implementation\",\"authors\":\"F. Bizzarri, D. Linaro, M. Storace\",\"doi\":\"10.1109/ECCTD.2007.4529737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-dimensional piecewise-linear approximation of the Hindmarsh-Rose neuron model is obtained, in view of its circuit implementation. The obtained approximation is checked by varying two bifurcation parameters. The brute-force two-dimensional bifurcation diagram of the original model is compared with the one of the piecewise-linear approximation, showing that the approximation is able to reproduce the main qualitative behaviours (quiescency, spiking, bursting, chaotic dynamics) of the original model.\",\"PeriodicalId\":445822,\"journal\":{\"name\":\"2007 18th European Conference on Circuit Theory and Design\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 18th European Conference on Circuit Theory and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD.2007.4529737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 18th European Conference on Circuit Theory and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2007.4529737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

考虑到Hindmarsh-Rose神经元模型的电路实现,得到了该模型的二维分段线性逼近。通过改变两个分岔参数来检验得到的近似。将原模型的二维蛮力分岔图与分段线性近似的蛮力分岔图进行了比较,结果表明,该近似能够再现原模型的主要定性行为(静止、尖峰、爆破、混沌动力学)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PWL approximation of the Hindmarsh-Rose neuron model in view of its circuit implementation
A two-dimensional piecewise-linear approximation of the Hindmarsh-Rose neuron model is obtained, in view of its circuit implementation. The obtained approximation is checked by varying two bifurcation parameters. The brute-force two-dimensional bifurcation diagram of the original model is compared with the one of the piecewise-linear approximation, showing that the approximation is able to reproduce the main qualitative behaviours (quiescency, spiking, bursting, chaotic dynamics) of the original model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信