个性化推荐算法的自适应框架

Jianchang Tang, Xinhuai Tang
{"title":"个性化推荐算法的自适应框架","authors":"Jianchang Tang, Xinhuai Tang","doi":"10.1109/CCIOT.2014.7062515","DOIUrl":null,"url":null,"abstract":"Different personalized recommendation algorithms are suitable for different scenarios. In this paper, we use artificial neural networks to implement an adaptive framework. When we add different recommendation algorithms into it and train it with the data from a given scenario, it can calculate the weight of each algorithm, choose suitable algorithms and give a more accurate prediction rating.","PeriodicalId":255477,"journal":{"name":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An adaptive framework for personalized recommendation algorithms\",\"authors\":\"Jianchang Tang, Xinhuai Tang\",\"doi\":\"10.1109/CCIOT.2014.7062515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different personalized recommendation algorithms are suitable for different scenarios. In this paper, we use artificial neural networks to implement an adaptive framework. When we add different recommendation algorithms into it and train it with the data from a given scenario, it can calculate the weight of each algorithm, choose suitable algorithms and give a more accurate prediction rating.\",\"PeriodicalId\":255477,\"journal\":{\"name\":\"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIOT.2014.7062515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIOT.2014.7062515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同的个性化推荐算法适用于不同的场景。在本文中,我们使用人工神经网络来实现一个自适应框架。当我们加入不同的推荐算法,并使用给定场景的数据对其进行训练时,它可以计算出每种算法的权重,选择合适的算法,给出更准确的预测评级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive framework for personalized recommendation algorithms
Different personalized recommendation algorithms are suitable for different scenarios. In this paper, we use artificial neural networks to implement an adaptive framework. When we add different recommendation algorithms into it and train it with the data from a given scenario, it can calculate the weight of each algorithm, choose suitable algorithms and give a more accurate prediction rating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信