{"title":"混合云环境下并行工作流任务的高效能量感知任务调度","authors":"Thanawut Thanavanich, P. Uthayopas","doi":"10.1109/ICSEC.2013.6694749","DOIUrl":null,"url":null,"abstract":"In this paper, the challenge of scheduling a parallel application on a cloud environment to achieve both time and energy efficiency is addressed. Two energy-aware task scheduling algorithms called the EHEFT and the ECPOP are proposed to address the challenge. These algorithms have the objective of trying to sustain the makespan and energy consumption at the same time. The concept is to use a metric that identify the inefficient processors and shut them down to reduce energy consumption. Then, the task is rescheduled to use fewer processors to obtain more energy efficiency. The experimental results from the simulation show that our enhanced algorithms not only reduce the energy consumption, but also maintain a good quality of the scheduling. This will enable the efficient use of the cloud system as a large scalable computing platform.","PeriodicalId":191620,"journal":{"name":"2013 International Computer Science and Engineering Conference (ICSEC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Efficient energy aware task scheduling for parallel workflow tasks on hybrids cloud environment\",\"authors\":\"Thanawut Thanavanich, P. Uthayopas\",\"doi\":\"10.1109/ICSEC.2013.6694749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the challenge of scheduling a parallel application on a cloud environment to achieve both time and energy efficiency is addressed. Two energy-aware task scheduling algorithms called the EHEFT and the ECPOP are proposed to address the challenge. These algorithms have the objective of trying to sustain the makespan and energy consumption at the same time. The concept is to use a metric that identify the inefficient processors and shut them down to reduce energy consumption. Then, the task is rescheduled to use fewer processors to obtain more energy efficiency. The experimental results from the simulation show that our enhanced algorithms not only reduce the energy consumption, but also maintain a good quality of the scheduling. This will enable the efficient use of the cloud system as a large scalable computing platform.\",\"PeriodicalId\":191620,\"journal\":{\"name\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Computer Science and Engineering Conference (ICSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSEC.2013.6694749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Computer Science and Engineering Conference (ICSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSEC.2013.6694749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient energy aware task scheduling for parallel workflow tasks on hybrids cloud environment
In this paper, the challenge of scheduling a parallel application on a cloud environment to achieve both time and energy efficiency is addressed. Two energy-aware task scheduling algorithms called the EHEFT and the ECPOP are proposed to address the challenge. These algorithms have the objective of trying to sustain the makespan and energy consumption at the same time. The concept is to use a metric that identify the inefficient processors and shut them down to reduce energy consumption. Then, the task is rescheduled to use fewer processors to obtain more energy efficiency. The experimental results from the simulation show that our enhanced algorithms not only reduce the energy consumption, but also maintain a good quality of the scheduling. This will enable the efficient use of the cloud system as a large scalable computing platform.