用条件生成对抗网络(cgan)插值地震数据

Dimas Estrasulas de Oliveira, R. Ferreira, Rui F. Silva, E. V. Brazil
{"title":"用条件生成对抗网络(cgan)插值地震数据","authors":"Dimas Estrasulas de Oliveira, R. Ferreira, Rui F. Silva, E. V. Brazil","doi":"10.3997/2214-4609.201803021","DOIUrl":null,"url":null,"abstract":"Summary In seismic acquisition and processing, several factors may cause missing data or data issues. Primarily, the physical constraints of the method, such as limitation on the available length of the streamer or receiver cable, instrumental and recording problems, and target illumination, e.g., when a geo body shadows the waves, are some of the significant sources of issues in the survey. Many works have tackled this problem using pre-stack data and can be classified into three main categories: wave-equation, domain transform, and prediction-error-filter methods. In this work, we assess the performance of a cGAN (Conditional Generative Adversarial Network) for the interpolation problem in post-stack seismic datasets. To the best of our knowledge, this is the first work to evaluate a deep learning approach in this context. Quantitative and qualitative evaluations of our experiments indicate that deep-networks may present a compelling alternative to classical methods.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seismic Data Interpolation With Conditional Generative Adversarial Networks (cGANs)\",\"authors\":\"Dimas Estrasulas de Oliveira, R. Ferreira, Rui F. Silva, E. V. Brazil\",\"doi\":\"10.3997/2214-4609.201803021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In seismic acquisition and processing, several factors may cause missing data or data issues. Primarily, the physical constraints of the method, such as limitation on the available length of the streamer or receiver cable, instrumental and recording problems, and target illumination, e.g., when a geo body shadows the waves, are some of the significant sources of issues in the survey. Many works have tackled this problem using pre-stack data and can be classified into three main categories: wave-equation, domain transform, and prediction-error-filter methods. In this work, we assess the performance of a cGAN (Conditional Generative Adversarial Network) for the interpolation problem in post-stack seismic datasets. To the best of our knowledge, this is the first work to evaluate a deep learning approach in this context. Quantitative and qualitative evaluations of our experiments indicate that deep-networks may present a compelling alternative to classical methods.\",\"PeriodicalId\":231338,\"journal\":{\"name\":\"First EAGE/PESGB Workshop Machine Learning\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First EAGE/PESGB Workshop Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201803021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在地震采集和处理中,有几个因素可能导致数据丢失或数据问题。首先,该方法的物理限制,例如对拖缆或接收电缆可用长度的限制,仪器和记录问题,以及目标照明,例如当地球体遮挡波时,这些都是调查中一些重要问题的来源。许多工作已经使用叠前数据解决了这个问题,可以分为三大类:波动方程、域变换和预测误差滤波方法。在这项工作中,我们评估了cGAN(条件生成对抗网络)在叠后地震数据集插值问题中的性能。据我们所知,这是第一个在这种情况下评估深度学习方法的工作。我们实验的定量和定性评估表明,深度网络可能是经典方法的一个令人信服的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic Data Interpolation With Conditional Generative Adversarial Networks (cGANs)
Summary In seismic acquisition and processing, several factors may cause missing data or data issues. Primarily, the physical constraints of the method, such as limitation on the available length of the streamer or receiver cable, instrumental and recording problems, and target illumination, e.g., when a geo body shadows the waves, are some of the significant sources of issues in the survey. Many works have tackled this problem using pre-stack data and can be classified into three main categories: wave-equation, domain transform, and prediction-error-filter methods. In this work, we assess the performance of a cGAN (Conditional Generative Adversarial Network) for the interpolation problem in post-stack seismic datasets. To the best of our knowledge, this is the first work to evaluate a deep learning approach in this context. Quantitative and qualitative evaluations of our experiments indicate that deep-networks may present a compelling alternative to classical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信