利用支持向量机和侵袭性肿瘤生长优化预测药物-靶标相互作用

Deyu Tang, Dongwei Cao, Jie Zhao
{"title":"利用支持向量机和侵袭性肿瘤生长优化预测药物-靶标相互作用","authors":"Deyu Tang, Dongwei Cao, Jie Zhao","doi":"10.14257/ijhit.2017.10.9.04","DOIUrl":null,"url":null,"abstract":"Prediction of drug-target interaction is a core problem in drug discovery. In these years, more machine learning methods have been used to solve this problem, but invalid due to the imbalanced data set. In this paper, we propose a new ensemble learning framework by the support vector machine(SVM) and invasive tumor growth optimization(ITGO) algorithm. ITGO is used to solve the penalty parameter optimization problem of SVM for the imbalanced data set. In order to verify the performance of our methods, four benchmark dataset are chosen to compare with the well-known methods. Experimental results show that our method has better effectiveness and robustness than other methods.","PeriodicalId":170772,"journal":{"name":"International Journal of Hybrid Information Technology","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Drug-target Interaction using Support Vector Machine and Invasive Tumor Growth Optimization\",\"authors\":\"Deyu Tang, Dongwei Cao, Jie Zhao\",\"doi\":\"10.14257/ijhit.2017.10.9.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of drug-target interaction is a core problem in drug discovery. In these years, more machine learning methods have been used to solve this problem, but invalid due to the imbalanced data set. In this paper, we propose a new ensemble learning framework by the support vector machine(SVM) and invasive tumor growth optimization(ITGO) algorithm. ITGO is used to solve the penalty parameter optimization problem of SVM for the imbalanced data set. In order to verify the performance of our methods, four benchmark dataset are chosen to compare with the well-known methods. Experimental results show that our method has better effectiveness and robustness than other methods.\",\"PeriodicalId\":170772,\"journal\":{\"name\":\"International Journal of Hybrid Information Technology\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hybrid Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/ijhit.2017.10.9.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hybrid Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/ijhit.2017.10.9.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

药物-靶标相互作用预测是药物发现中的核心问题。近年来,越来越多的机器学习方法被用来解决这个问题,但由于数据集的不平衡而无效。本文提出了一个基于支持向量机(SVM)和侵袭性肿瘤生长优化(ITGO)算法的集成学习框架。利用ITGO解决支持向量机对不平衡数据集的惩罚参数优化问题。为了验证我们的方法的性能,选择了四个基准数据集与已知的方法进行比较。实验结果表明,该方法具有较好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Drug-target Interaction using Support Vector Machine and Invasive Tumor Growth Optimization
Prediction of drug-target interaction is a core problem in drug discovery. In these years, more machine learning methods have been used to solve this problem, but invalid due to the imbalanced data set. In this paper, we propose a new ensemble learning framework by the support vector machine(SVM) and invasive tumor growth optimization(ITGO) algorithm. ITGO is used to solve the penalty parameter optimization problem of SVM for the imbalanced data set. In order to verify the performance of our methods, four benchmark dataset are chosen to compare with the well-known methods. Experimental results show that our method has better effectiveness and robustness than other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信