基于径向基函数神经网络(RBFNN)和p-q功率理论的变换器波形动态谐波识别

Eyad K. Almaita, J. Asumadu
{"title":"基于径向基函数神经网络(RBFNN)和p-q功率理论的变换器波形动态谐波识别","authors":"Eyad K. Almaita, J. Asumadu","doi":"10.1109/ICIT.2011.5754360","DOIUrl":null,"url":null,"abstract":"Radial basis function neural networks (RBFNN) are used to dynamically identify harmonics content in converter waveforms based on p-q (real power-imaginary power) theory. The converter waveforms are analyzed and the harmonic contents are identified over a wide operating range. The proposed RBFNN filtering training algorithm are based on systematic and computationally efficient training method called hybrid learning method. The small size and the robustness of the resulted network reflect the effectiveness of the proposed algorithm. The analysis is verified using MATLAB simulation.","PeriodicalId":356868,"journal":{"name":"2011 IEEE International Conference on Industrial Technology","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamic harmonic identification in converter waveforms using radial basis function neural networks (RBFNN) and p-q power theory\",\"authors\":\"Eyad K. Almaita, J. Asumadu\",\"doi\":\"10.1109/ICIT.2011.5754360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radial basis function neural networks (RBFNN) are used to dynamically identify harmonics content in converter waveforms based on p-q (real power-imaginary power) theory. The converter waveforms are analyzed and the harmonic contents are identified over a wide operating range. The proposed RBFNN filtering training algorithm are based on systematic and computationally efficient training method called hybrid learning method. The small size and the robustness of the resulted network reflect the effectiveness of the proposed algorithm. The analysis is verified using MATLAB simulation.\",\"PeriodicalId\":356868,\"journal\":{\"name\":\"2011 IEEE International Conference on Industrial Technology\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Industrial Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2011.5754360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Industrial Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2011.5754360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于p-q(实功率-虚功率)理论,采用径向基函数神经网络(RBFNN)动态识别变换器波形中的谐波含量。分析了变换器的波形,并在较宽的工作范围内识别了谐波含量。本文提出的RBFNN滤波训练算法是基于一种系统且计算效率高的训练方法——混合学习方法。所得到的网络的小尺寸和鲁棒性反映了所提算法的有效性。通过MATLAB仿真验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic harmonic identification in converter waveforms using radial basis function neural networks (RBFNN) and p-q power theory
Radial basis function neural networks (RBFNN) are used to dynamically identify harmonics content in converter waveforms based on p-q (real power-imaginary power) theory. The converter waveforms are analyzed and the harmonic contents are identified over a wide operating range. The proposed RBFNN filtering training algorithm are based on systematic and computationally efficient training method called hybrid learning method. The small size and the robustness of the resulted network reflect the effectiveness of the proposed algorithm. The analysis is verified using MATLAB simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信