基于谐振频移的外电路纳米填料改性复合材料损伤检测

T. Tallman
{"title":"基于谐振频移的外电路纳米填料改性复合材料损伤检测","authors":"T. Tallman","doi":"10.1115/SMASIS2018-8008","DOIUrl":null,"url":null,"abstract":"Conductive nanofiller-modified composites have received a lot of attention from the structural health monitoring (SHM) research community in recent years because these materials are piezoresistive (i.e. they have deformation and damage-dependent electrical conductivity) and are therefore self-sensing. To date, the vast majority of work in this area has utilized direct current (DC) interrogation to identify and/or localize damage. While this approach has been met with much success, it is also well known that nanofiller-modified composites possess frequency-dependent electrical behavior. This behavior can be roughly modeled as a parallel resistor-capacitor circuit. However, much less work has been done to explore the potential this frequency-dependent behavior for damage detection. To this end, the work herein presented covers some preliminary results which leverage high-frequency electrical interrogation for damage detection. More specifically, carbon nanofiber (CNF)/epoxy specimens are produced and connected to an external inductor in both series and parallel configurations. Because the CNF/epoxy electrically behaves like a resistor-capacitor circuit, the inclusion of an inductor enables electrical resonance to be achieved. Changes in resonant frequency are then used for rudimentary damage detection. These preliminary results indicate that the potential of SHM via the piezoresistive effect in nanofiller-modified composites can be considerably expanded by leveraging alternating current (AC) interrogation and resonant frequency principles.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Damage Detection in Nanofiller-Modified Composites With External Circuitry via Resonant Frequency Shifts\",\"authors\":\"T. Tallman\",\"doi\":\"10.1115/SMASIS2018-8008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conductive nanofiller-modified composites have received a lot of attention from the structural health monitoring (SHM) research community in recent years because these materials are piezoresistive (i.e. they have deformation and damage-dependent electrical conductivity) and are therefore self-sensing. To date, the vast majority of work in this area has utilized direct current (DC) interrogation to identify and/or localize damage. While this approach has been met with much success, it is also well known that nanofiller-modified composites possess frequency-dependent electrical behavior. This behavior can be roughly modeled as a parallel resistor-capacitor circuit. However, much less work has been done to explore the potential this frequency-dependent behavior for damage detection. To this end, the work herein presented covers some preliminary results which leverage high-frequency electrical interrogation for damage detection. More specifically, carbon nanofiber (CNF)/epoxy specimens are produced and connected to an external inductor in both series and parallel configurations. Because the CNF/epoxy electrically behaves like a resistor-capacitor circuit, the inclusion of an inductor enables electrical resonance to be achieved. Changes in resonant frequency are then used for rudimentary damage detection. These preliminary results indicate that the potential of SHM via the piezoresistive effect in nanofiller-modified composites can be considerably expanded by leveraging alternating current (AC) interrogation and resonant frequency principles.\",\"PeriodicalId\":117187,\"journal\":{\"name\":\"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/SMASIS2018-8008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/SMASIS2018-8008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

导电性纳米填料改性复合材料近年来受到结构健康监测(SHM)研究界的广泛关注,因为这些材料具有压阻性(即具有变形和损伤相关的导电性),因此具有自传感能力。迄今为止,该领域的绝大多数工作都是利用直流(DC)探测来识别和/或定位损坏。虽然这种方法已经取得了很大的成功,但众所周知,纳米填料修饰的复合材料具有频率相关的电行为。这种行为可以大致模拟为一个并联的电阻-电容电路。然而,在探索这种频率相关行为在损伤检测中的潜力方面,所做的工作要少得多。为此,本文介绍的工作涵盖了一些利用高频电询问进行损伤检测的初步结果。更具体地说,碳纳米纤维(CNF)/环氧树脂样品生产和连接到外部电感在串联和并联配置。由于CNF/环氧树脂在电行为上类似于电阻-电容电路,因此包含电感器可以实现电谐振。然后利用谐振频率的变化进行基本的损伤检测。这些初步结果表明,利用交流电流(AC)和谐振频率原理,通过压阻效应在纳米填料改性复合材料中进行SHM的潜力可以大大扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Damage Detection in Nanofiller-Modified Composites With External Circuitry via Resonant Frequency Shifts
Conductive nanofiller-modified composites have received a lot of attention from the structural health monitoring (SHM) research community in recent years because these materials are piezoresistive (i.e. they have deformation and damage-dependent electrical conductivity) and are therefore self-sensing. To date, the vast majority of work in this area has utilized direct current (DC) interrogation to identify and/or localize damage. While this approach has been met with much success, it is also well known that nanofiller-modified composites possess frequency-dependent electrical behavior. This behavior can be roughly modeled as a parallel resistor-capacitor circuit. However, much less work has been done to explore the potential this frequency-dependent behavior for damage detection. To this end, the work herein presented covers some preliminary results which leverage high-frequency electrical interrogation for damage detection. More specifically, carbon nanofiber (CNF)/epoxy specimens are produced and connected to an external inductor in both series and parallel configurations. Because the CNF/epoxy electrically behaves like a resistor-capacitor circuit, the inclusion of an inductor enables electrical resonance to be achieved. Changes in resonant frequency are then used for rudimentary damage detection. These preliminary results indicate that the potential of SHM via the piezoresistive effect in nanofiller-modified composites can be considerably expanded by leveraging alternating current (AC) interrogation and resonant frequency principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信