直觉模糊非线性分数阶微分方程的稳定性

S. Melliani, Ali El Mfadel, L. S. Chadli, M. Elomari
{"title":"直觉模糊非线性分数阶微分方程的稳定性","authors":"S. Melliani, Ali El Mfadel, L. S. Chadli, M. Elomari","doi":"10.7546/nifs.2021.27.1.83-100","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence and uniqueness results of solution for the intuitionistic fuzzy nonlinear fractional differential equations involving the Caputo concepts of fractional derivative. In addition, we establish essentially the Mittag-Leffler stability result for the intuitionistic fuzzy nonlinear fractional differential equations by giving some sufficient criteria to guarantee the stability of the zero solution. Finally, some examples are presented to illustrate the proposed stability theorem.","PeriodicalId":433687,"journal":{"name":"Notes on Intuitionistic Fuzzy Sets","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stability of intuitionistic fuzzy nonlinear fractional differential equations\",\"authors\":\"S. Melliani, Ali El Mfadel, L. S. Chadli, M. Elomari\",\"doi\":\"10.7546/nifs.2021.27.1.83-100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence and uniqueness results of solution for the intuitionistic fuzzy nonlinear fractional differential equations involving the Caputo concepts of fractional derivative. In addition, we establish essentially the Mittag-Leffler stability result for the intuitionistic fuzzy nonlinear fractional differential equations by giving some sufficient criteria to guarantee the stability of the zero solution. Finally, some examples are presented to illustrate the proposed stability theorem.\",\"PeriodicalId\":433687,\"journal\":{\"name\":\"Notes on Intuitionistic Fuzzy Sets\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Intuitionistic Fuzzy Sets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nifs.2021.27.1.83-100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Intuitionistic Fuzzy Sets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nifs.2021.27.1.83-100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一类包含分数阶导数Caputo概念的直觉模糊非线性分数阶微分方程解的存在唯一性结果。此外,通过给出保证零解稳定性的充分判据,从本质上建立了直觉模糊非线性分数阶微分方程的Mittag-Leffler稳定性结果。最后,给出了一些例子来说明所提出的稳定性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of intuitionistic fuzzy nonlinear fractional differential equations
In this paper, we study the existence and uniqueness results of solution for the intuitionistic fuzzy nonlinear fractional differential equations involving the Caputo concepts of fractional derivative. In addition, we establish essentially the Mittag-Leffler stability result for the intuitionistic fuzzy nonlinear fractional differential equations by giving some sufficient criteria to guarantee the stability of the zero solution. Finally, some examples are presented to illustrate the proposed stability theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信