{"title":"单调三次样条插值","authors":"G. Wolberg, Itzik Alfy","doi":"10.1109/CGI.1999.777953","DOIUrl":null,"url":null,"abstract":"This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C/sup 2/ continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is to determine the smoothest possible curve that passes through its control points while simultaneously satisfying the monotonicity constraint. We first describe a set of conditions that form the basis of the monotonic cubic spline interpolation algorithm presented. The conditions are simplified and consolidated to yield a fast method for determining monotonicity. This result is applied within an energy minimization framework to yield linear and nonlinear optimization-based methods. We consider various energy measures for the optimization objective functions. Comparisons among the different techniques are given, and superior monotonic cubic spline interpolation results are presented.","PeriodicalId":165593,"journal":{"name":"1999 Proceedings Computer Graphics International","volume":"613 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Monotonic cubic spline interpolation\",\"authors\":\"G. Wolberg, Itzik Alfy\",\"doi\":\"10.1109/CGI.1999.777953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C/sup 2/ continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is to determine the smoothest possible curve that passes through its control points while simultaneously satisfying the monotonicity constraint. We first describe a set of conditions that form the basis of the monotonic cubic spline interpolation algorithm presented. The conditions are simplified and consolidated to yield a fast method for determining monotonicity. This result is applied within an energy minimization framework to yield linear and nonlinear optimization-based methods. We consider various energy measures for the optimization objective functions. Comparisons among the different techniques are given, and superior monotonic cubic spline interpolation results are presented.\",\"PeriodicalId\":165593,\"journal\":{\"name\":\"1999 Proceedings Computer Graphics International\",\"volume\":\"613 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Proceedings Computer Graphics International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGI.1999.777953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Proceedings Computer Graphics International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGI.1999.777953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C/sup 2/ continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is to determine the smoothest possible curve that passes through its control points while simultaneously satisfying the monotonicity constraint. We first describe a set of conditions that form the basis of the monotonic cubic spline interpolation algorithm presented. The conditions are simplified and consolidated to yield a fast method for determining monotonicity. This result is applied within an energy minimization framework to yield linear and nonlinear optimization-based methods. We consider various energy measures for the optimization objective functions. Comparisons among the different techniques are given, and superior monotonic cubic spline interpolation results are presented.