衰减估计(定理M4, M5)

S. Klainerman, J. Szeftel
{"title":"衰减估计(定理M4, M5)","authors":"S. Klainerman, J. Szeftel","doi":"10.2307/j.ctv15r57cw.11","DOIUrl":null,"url":null,"abstract":"This chapter evaluates the proof for Theorems M4 and M5. It relies on the decay of q, α‎ and α‎ to prove the decay estimates for all the other quantities. More precisely, the chapter relies on the results of Theorems M1, M2, and M3 to prove Theorems M4 and M5. The detailed proof of Theorem M4 provides the main decay estimates in (ext)M. The proof depends in a fundamental way on the geometric properties of the GCM hypersurface Σ‎∗, the spacelike future boundary of (ext)M introduced in section 3.1.2. The chapter then reformulates the main bootstrap assumptions in the form needed in the proof of Theorem M4.","PeriodicalId":371134,"journal":{"name":"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay Estimates (Theorems M4, M5)\",\"authors\":\"S. Klainerman, J. Szeftel\",\"doi\":\"10.2307/j.ctv15r57cw.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter evaluates the proof for Theorems M4 and M5. It relies on the decay of q, α‎ and α‎ to prove the decay estimates for all the other quantities. More precisely, the chapter relies on the results of Theorems M1, M2, and M3 to prove Theorems M4 and M5. The detailed proof of Theorem M4 provides the main decay estimates in (ext)M. The proof depends in a fundamental way on the geometric properties of the GCM hypersurface Σ‎∗, the spacelike future boundary of (ext)M introduced in section 3.1.2. The chapter then reformulates the main bootstrap assumptions in the form needed in the proof of Theorem M4.\",\"PeriodicalId\":371134,\"journal\":{\"name\":\"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv15r57cw.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nonlinear Stability of Schwarzschild Spacetime under Polarized Perturbations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv15r57cw.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章计算定理M4和定理M5的证明。它依赖于q, α′和α′的衰减来证明所有其他量的衰减估计。更准确地说,本章依靠定理M1、M2和M3的结果来证明定理M4和M5。定理M4的详细证明提供了(ext)M中的主要衰减估计。这个证明从根本上依赖于GCM超曲面Σ™*的几何性质,它是在3.1.2节中介绍的(外)M的类空间未来边界。然后,本章以证明定理M4所需的形式重新表述了主要的自举假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decay Estimates (Theorems M4, M5)
This chapter evaluates the proof for Theorems M4 and M5. It relies on the decay of q, α‎ and α‎ to prove the decay estimates for all the other quantities. More precisely, the chapter relies on the results of Theorems M1, M2, and M3 to prove Theorems M4 and M5. The detailed proof of Theorem M4 provides the main decay estimates in (ext)M. The proof depends in a fundamental way on the geometric properties of the GCM hypersurface Σ‎∗, the spacelike future boundary of (ext)M introduced in section 3.1.2. The chapter then reformulates the main bootstrap assumptions in the form needed in the proof of Theorem M4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信