基于神经网络滤波的空间自适应图像恢复

A. S. Palmer, M. Razaz, D. Mandic
{"title":"基于神经网络滤波的空间自适应图像恢复","authors":"A. S. Palmer, M. Razaz, D. Mandic","doi":"10.1109/SBRN.2002.1181467","DOIUrl":null,"url":null,"abstract":"When using a regularized approach for image restoration there is always a compromise between image sharpness and noise suppression. Therefore, the main problem is to remove as much noise as possible while preserving sharpness in the restoration. To this cause we introduce a spatially regularized neural approach that makes use of local image statistics to apply varying regularization to different areas of the image. This is achieved with an efficient parallel implementation of the Hopfield neural network. The proposed approach exhibits an improvement in restoration quality and execution time over the existing approaches. This is illustrated on simulations on benchmark images.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spatially adaptive image restoration by neural network filtering\",\"authors\":\"A. S. Palmer, M. Razaz, D. Mandic\",\"doi\":\"10.1109/SBRN.2002.1181467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When using a regularized approach for image restoration there is always a compromise between image sharpness and noise suppression. Therefore, the main problem is to remove as much noise as possible while preserving sharpness in the restoration. To this cause we introduce a spatially regularized neural approach that makes use of local image statistics to apply varying regularization to different areas of the image. This is achieved with an efficient parallel implementation of the Hopfield neural network. The proposed approach exhibits an improvement in restoration quality and execution time over the existing approaches. This is illustrated on simulations on benchmark images.\",\"PeriodicalId\":157186,\"journal\":{\"name\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2002.1181467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

当使用正则化方法进行图像恢复时,总是在图像清晰度和噪声抑制之间做出妥协。因此,主要的问题是在保持恢复的清晰度的同时尽可能多地去除噪声。为此,我们引入了一种空间正则化神经方法,该方法利用局部图像统计对图像的不同区域应用不同的正则化。这是通过Hopfield神经网络的高效并行实现实现的。与现有方法相比,所提出的方法在恢复质量和执行时间上都有改进。对基准图像的模拟说明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatially adaptive image restoration by neural network filtering
When using a regularized approach for image restoration there is always a compromise between image sharpness and noise suppression. Therefore, the main problem is to remove as much noise as possible while preserving sharpness in the restoration. To this cause we introduce a spatially regularized neural approach that makes use of local image statistics to apply varying regularization to different areas of the image. This is achieved with an efficient parallel implementation of the Hopfield neural network. The proposed approach exhibits an improvement in restoration quality and execution time over the existing approaches. This is illustrated on simulations on benchmark images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信