与YOLOv4使用反导神经网络实时检测新鲜鱼类

Chichi Rizka Gunawan, Nurdin Nurdin, Fajriana Fajriana
{"title":"与YOLOv4使用反导神经网络实时检测新鲜鱼类","authors":"Chichi Rizka Gunawan, Nurdin Nurdin, Fajriana Fajriana","doi":"10.31603/komtika.v7i1.8986","DOIUrl":null,"url":null,"abstract":"Ikan merupakan komoditas mudah rusak yang memerlukan penanganan segera setelah dikeluarkan dari laut. Untuk ikan segar dapat dilihat jika tidak diberikan pengolahan khusus yang tepat, kualitas ikan akan menurun dengan hitungan jam. Setiap orang ingin membeli ikan yang halal, aman, sehat, dan berkualitas tinggi. Selain itu juga perlu mengetahui perbedaan ikan yang segar dan tidak segar, terkadang ada pedagang nakal, ikan yang tidak segar masih dijual. Sehingga produk menjadi tidak aman saat dikonsumsi dan dapat merugikan konsumen. Untuk mengetahui akurasi dan performansi algoritma pendeteksi kesegaran ikan di Yolov4 menggunakan metode convolutional neural network (CNN), penelitian ini membuat sistem pendeteksi ikan segar secara realtime. Seiring waktu, orang mengembangkan pengetahuan dan teknologi untuk mendukung dan memfasilitasi pekerjaan mereka. Penelitian ini menggunakan 118 data citra untuk pelatihan dan 13 data citra untuk pengujian, dengan pelatihan berlangsung selama 6000 epoch. Proses YOLOv4-CNN adalah hasil dari data yang telah dideteksi oleh YOLOv4 akan diklasifikasi modelnya oleh CNN dimana sebelumnya citra akan di resize sehingga seluruh data citra memiliki ukuran yang sama untuk memudahkan proses konvolusi, dilanjutkan dengan fungsi aktivasi, pooling layer, fully connected layer dan diakhiri dengan proses klasifikasi objek. Kemudian hasil klasifikasi akan diimplementasikan kembali pada YOLOv4 untuk mengetahui pendeteksian ikan segar telah terdeteksi dengan baik atau tidak. Hasil dari pendeteksian kesegaran ikan menggunakan algoritma YOLOv4-CNN dapat dinilai bekerja dengan baik. Pengujian sistem pada Yolov4-CNN memperoleh MAP sebesar 93.75%, dengan presisi 1.00%, recall 0.93%, f-Score 0.96% dan juga rata-rata nilai IoU sebesar 74.17%.","PeriodicalId":292404,"journal":{"name":"Jurnal Komtika (Komputasi dan Informatika)","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deteksi Ikan Segar Secara Realtime dengan YOLOv4 menggunakan Metode Convolutional Neural Network\",\"authors\":\"Chichi Rizka Gunawan, Nurdin Nurdin, Fajriana Fajriana\",\"doi\":\"10.31603/komtika.v7i1.8986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ikan merupakan komoditas mudah rusak yang memerlukan penanganan segera setelah dikeluarkan dari laut. Untuk ikan segar dapat dilihat jika tidak diberikan pengolahan khusus yang tepat, kualitas ikan akan menurun dengan hitungan jam. Setiap orang ingin membeli ikan yang halal, aman, sehat, dan berkualitas tinggi. Selain itu juga perlu mengetahui perbedaan ikan yang segar dan tidak segar, terkadang ada pedagang nakal, ikan yang tidak segar masih dijual. Sehingga produk menjadi tidak aman saat dikonsumsi dan dapat merugikan konsumen. Untuk mengetahui akurasi dan performansi algoritma pendeteksi kesegaran ikan di Yolov4 menggunakan metode convolutional neural network (CNN), penelitian ini membuat sistem pendeteksi ikan segar secara realtime. Seiring waktu, orang mengembangkan pengetahuan dan teknologi untuk mendukung dan memfasilitasi pekerjaan mereka. Penelitian ini menggunakan 118 data citra untuk pelatihan dan 13 data citra untuk pengujian, dengan pelatihan berlangsung selama 6000 epoch. Proses YOLOv4-CNN adalah hasil dari data yang telah dideteksi oleh YOLOv4 akan diklasifikasi modelnya oleh CNN dimana sebelumnya citra akan di resize sehingga seluruh data citra memiliki ukuran yang sama untuk memudahkan proses konvolusi, dilanjutkan dengan fungsi aktivasi, pooling layer, fully connected layer dan diakhiri dengan proses klasifikasi objek. Kemudian hasil klasifikasi akan diimplementasikan kembali pada YOLOv4 untuk mengetahui pendeteksian ikan segar telah terdeteksi dengan baik atau tidak. Hasil dari pendeteksian kesegaran ikan menggunakan algoritma YOLOv4-CNN dapat dinilai bekerja dengan baik. Pengujian sistem pada Yolov4-CNN memperoleh MAP sebesar 93.75%, dengan presisi 1.00%, recall 0.93%, f-Score 0.96% dan juga rata-rata nilai IoU sebesar 74.17%.\",\"PeriodicalId\":292404,\"journal\":{\"name\":\"Jurnal Komtika (Komputasi dan Informatika)\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Komtika (Komputasi dan Informatika)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31603/komtika.v7i1.8986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komtika (Komputasi dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31603/komtika.v7i1.8986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鱼是一种易腐烂的商品,需要立即处理。如果不进行适当的特殊处理,新鲜鱼类的质量将在数小时内下降。每个人都想买清真、安全、健康、高质量的鱼。此外,还需要了解新鲜和不新鲜的鱼的区别,有时还有流氓商人,不新鲜的鱼仍在出售。因此,产品在消费过程中变得不安全,可能对消费者造成伤害。为了确定Yolov4的鱼清新检测算法的准确性和性能,该研究采用了反冲神经网络(CNN),创造了一个实时的鱼探测系统。随着时间的推移,人们发展了支持和促进他们的工作的知识和技术。本研究使用118个图像数据进行培训,使用13个图像数据进行测试,培训进行6000个epoch。YOLOv4-CNN的进程是CNN检测到的数据的结果,而YOLOv4最初的图像将在此之前对其模型进行评级,这样整个图像数据将具有相同的大小,以促进改革进程,然后加入激活功能,pooling层,完全连接的层,并以对象分类进程结束。然后分类结果将在YOLOv4重新实施,以确定新鲜的鱼检测是否检测良好。使用YOLOv4-CNN算法检测新鲜鱼类的结果可能非常好。Yolov4-CNN的系统检测结果为93%,回收率为0.93%,f-得分为0.96%,平均值为74.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deteksi Ikan Segar Secara Realtime dengan YOLOv4 menggunakan Metode Convolutional Neural Network
Ikan merupakan komoditas mudah rusak yang memerlukan penanganan segera setelah dikeluarkan dari laut. Untuk ikan segar dapat dilihat jika tidak diberikan pengolahan khusus yang tepat, kualitas ikan akan menurun dengan hitungan jam. Setiap orang ingin membeli ikan yang halal, aman, sehat, dan berkualitas tinggi. Selain itu juga perlu mengetahui perbedaan ikan yang segar dan tidak segar, terkadang ada pedagang nakal, ikan yang tidak segar masih dijual. Sehingga produk menjadi tidak aman saat dikonsumsi dan dapat merugikan konsumen. Untuk mengetahui akurasi dan performansi algoritma pendeteksi kesegaran ikan di Yolov4 menggunakan metode convolutional neural network (CNN), penelitian ini membuat sistem pendeteksi ikan segar secara realtime. Seiring waktu, orang mengembangkan pengetahuan dan teknologi untuk mendukung dan memfasilitasi pekerjaan mereka. Penelitian ini menggunakan 118 data citra untuk pelatihan dan 13 data citra untuk pengujian, dengan pelatihan berlangsung selama 6000 epoch. Proses YOLOv4-CNN adalah hasil dari data yang telah dideteksi oleh YOLOv4 akan diklasifikasi modelnya oleh CNN dimana sebelumnya citra akan di resize sehingga seluruh data citra memiliki ukuran yang sama untuk memudahkan proses konvolusi, dilanjutkan dengan fungsi aktivasi, pooling layer, fully connected layer dan diakhiri dengan proses klasifikasi objek. Kemudian hasil klasifikasi akan diimplementasikan kembali pada YOLOv4 untuk mengetahui pendeteksian ikan segar telah terdeteksi dengan baik atau tidak. Hasil dari pendeteksian kesegaran ikan menggunakan algoritma YOLOv4-CNN dapat dinilai bekerja dengan baik. Pengujian sistem pada Yolov4-CNN memperoleh MAP sebesar 93.75%, dengan presisi 1.00%, recall 0.93%, f-Score 0.96% dan juga rata-rata nilai IoU sebesar 74.17%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信