基于词位标注的藏文分词方法

Caijun Kang, Di Jiang, Congjun Long
{"title":"基于词位标注的藏文分词方法","authors":"Caijun Kang, Di Jiang, Congjun Long","doi":"10.1109/IALP.2013.74","DOIUrl":null,"url":null,"abstract":"The best advantage of Tibetan word segmentation based on word-position is to reduce segmentation errors for unknown words. In this article authors upgrade usual 4-tag set to 6-tag set to fit in with the features of Tibetan characters, using CRF as tagging model to train and test corpus data, then building post processing modules to revise the result data. The experimental result shows that this method achieves a good performance and deserves further study, including expanding the corpus and optimizing the tag set and feature templates.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Tibetan Word Segmentation Based on Word-Position Tagging\",\"authors\":\"Caijun Kang, Di Jiang, Congjun Long\",\"doi\":\"10.1109/IALP.2013.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The best advantage of Tibetan word segmentation based on word-position is to reduce segmentation errors for unknown words. In this article authors upgrade usual 4-tag set to 6-tag set to fit in with the features of Tibetan characters, using CRF as tagging model to train and test corpus data, then building post processing modules to revise the result data. The experimental result shows that this method achieves a good performance and deserves further study, including expanding the corpus and optimizing the tag set and feature templates.\",\"PeriodicalId\":413833,\"journal\":{\"name\":\"2013 International Conference on Asian Language Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2013.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

基于词位的藏文分词方法最大的优点是减少了对未知词的分词错误。本文将常用的四标签集升级为六标签集,以适应藏文字符的特点,利用CRF作为标注模型对语料库数据进行训练和测试,并构建后处理模块对结果数据进行修改。实验结果表明,该方法取得了良好的性能,值得进一步研究,包括扩展语料库、优化标签集和特征模板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tibetan Word Segmentation Based on Word-Position Tagging
The best advantage of Tibetan word segmentation based on word-position is to reduce segmentation errors for unknown words. In this article authors upgrade usual 4-tag set to 6-tag set to fit in with the features of Tibetan characters, using CRF as tagging model to train and test corpus data, then building post processing modules to revise the result data. The experimental result shows that this method achieves a good performance and deserves further study, including expanding the corpus and optimizing the tag set and feature templates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信