一种新的模糊c回归模型聚类效度准则

C. Kung, J. Su, Yi-Fen Nieh
{"title":"一种新的模糊c回归模型聚类效度准则","authors":"C. Kung, J. Su, Yi-Fen Nieh","doi":"10.1109/FUZZY.2009.5277386","DOIUrl":null,"url":null,"abstract":"This paper proposed a novel cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with hyper-plane-shaped clusters. We combined the concept of fuzzy hypervolume with the compactness validity function in the cluster validity criterion. The proposed cluster validity criterion determined the appropriate number of clusters by calculating the overall compactness and separateness of the FCRM partition. The simulation results demonstrated the validness and effectiveness of the proposed method.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A novel cluster validity criterion for fuzzy C-regression models\",\"authors\":\"C. Kung, J. Su, Yi-Fen Nieh\",\"doi\":\"10.1109/FUZZY.2009.5277386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a novel cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with hyper-plane-shaped clusters. We combined the concept of fuzzy hypervolume with the compactness validity function in the cluster validity criterion. The proposed cluster validity criterion determined the appropriate number of clusters by calculating the overall compactness and separateness of the FCRM partition. The simulation results demonstrated the validness and effectiveness of the proposed method.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

针对超平面型模糊c回归模型(FCRM)聚类算法,提出了一种新的聚类有效性准则。我们将模糊超体积的概念与聚类有效性准则中的紧度有效性函数相结合。提出的聚类有效性准则通过计算FCRM分区的总体紧密度和分离度来确定适当的聚类数量。仿真结果验证了该方法的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel cluster validity criterion for fuzzy C-regression models
This paper proposed a novel cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with hyper-plane-shaped clusters. We combined the concept of fuzzy hypervolume with the compactness validity function in the cluster validity criterion. The proposed cluster validity criterion determined the appropriate number of clusters by calculating the overall compactness and separateness of the FCRM partition. The simulation results demonstrated the validness and effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信