{"title":"平行四边形框架和柔性准晶体","authors":"S. C. Power","doi":"10.3318/pria.2021.121.02","DOIUrl":null,"url":null,"abstract":"The first-order flex space of the bar-joint framework $\\G_P$ of a parallelogram tiling $P$ is determined in terms of an explicit free basis. Applications are given to braced parallelogram frameworks and to quasicrystal frameworks associated with multigrids in the sense of de Bruijn and Beenker. In particular we characterise rigid bracing patterns, identify quasicrystal frameworks with finite dimensional flex spaces, and define a zero mode spectrum.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallelogram Frameworks and Flexible Quasicrystals\",\"authors\":\"S. C. Power\",\"doi\":\"10.3318/pria.2021.121.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first-order flex space of the bar-joint framework $\\\\G_P$ of a parallelogram tiling $P$ is determined in terms of an explicit free basis. Applications are given to braced parallelogram frameworks and to quasicrystal frameworks associated with multigrids in the sense of de Bruijn and Beenker. In particular we characterise rigid bracing patterns, identify quasicrystal frameworks with finite dimensional flex spaces, and define a zero mode spectrum.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/pria.2021.121.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/pria.2021.121.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallelogram Frameworks and Flexible Quasicrystals
The first-order flex space of the bar-joint framework $\G_P$ of a parallelogram tiling $P$ is determined in terms of an explicit free basis. Applications are given to braced parallelogram frameworks and to quasicrystal frameworks associated with multigrids in the sense of de Bruijn and Beenker. In particular we characterise rigid bracing patterns, identify quasicrystal frameworks with finite dimensional flex spaces, and define a zero mode spectrum.