平行四边形框架和柔性准晶体

S. C. Power
{"title":"平行四边形框架和柔性准晶体","authors":"S. C. Power","doi":"10.3318/pria.2021.121.02","DOIUrl":null,"url":null,"abstract":"The first-order flex space of the bar-joint framework $\\G_P$ of a parallelogram tiling $P$ is determined in terms of an explicit free basis. Applications are given to braced parallelogram frameworks and to quasicrystal frameworks associated with multigrids in the sense of de Bruijn and Beenker. In particular we characterise rigid bracing patterns, identify quasicrystal frameworks with finite dimensional flex spaces, and define a zero mode spectrum.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Parallelogram Frameworks and Flexible Quasicrystals\",\"authors\":\"S. C. Power\",\"doi\":\"10.3318/pria.2021.121.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first-order flex space of the bar-joint framework $\\\\G_P$ of a parallelogram tiling $P$ is determined in terms of an explicit free basis. Applications are given to braced parallelogram frameworks and to quasicrystal frameworks associated with multigrids in the sense of de Bruijn and Beenker. In particular we characterise rigid bracing patterns, identify quasicrystal frameworks with finite dimensional flex spaces, and define a zero mode spectrum.\",\"PeriodicalId\":434988,\"journal\":{\"name\":\"Mathematical Proceedings of the Royal Irish Academy\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Royal Irish Academy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3318/pria.2021.121.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3318/pria.2021.121.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

用显式自由基确定了平行四边形平铺$P$的杆节点框架$\G_P$的一阶挠性空间。在de Bruijn和Beenker的意义上,应用于支撑平行四边形框架和与多网格相关的准晶体框架。特别是,我们描述了刚性支撑模式,确定了具有有限维柔性空间的准晶体框架,并定义了零模谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelogram Frameworks and Flexible Quasicrystals
The first-order flex space of the bar-joint framework $\G_P$ of a parallelogram tiling $P$ is determined in terms of an explicit free basis. Applications are given to braced parallelogram frameworks and to quasicrystal frameworks associated with multigrids in the sense of de Bruijn and Beenker. In particular we characterise rigid bracing patterns, identify quasicrystal frameworks with finite dimensional flex spaces, and define a zero mode spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信