基于多种优化技术的MIMO系统性能比较分析

Piyali Das, R. Mehta, O. P. Roy
{"title":"基于多种优化技术的MIMO系统性能比较分析","authors":"Piyali Das, R. Mehta, O. P. Roy","doi":"10.1109/ICSENG.2018.8638205","DOIUrl":null,"url":null,"abstract":"This study illustrates the applications of the recently developed modern optimization techniques. Designing a controller for multiple input multiple output is a big challenge in control system application. To overcome the difficulties of analysing MIMO system a comparative statement of various solutions are prepared in this paper. The study is being done on manual tuning of linear quadratic regulator (LQR) parameters over genetic algorithm (GA) and particle swarm optimization (PSO) algorithm based parameters. The best optimized result is shown and discussed in this study. The comparison is being done the basis of standard deviations in the values of parameters and objective functions.","PeriodicalId":356324,"journal":{"name":"2018 26th International Conference on Systems Engineering (ICSEng)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparative Performance Analysis for A MIMO System Based On Various Optimization Techniques\",\"authors\":\"Piyali Das, R. Mehta, O. P. Roy\",\"doi\":\"10.1109/ICSENG.2018.8638205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study illustrates the applications of the recently developed modern optimization techniques. Designing a controller for multiple input multiple output is a big challenge in control system application. To overcome the difficulties of analysing MIMO system a comparative statement of various solutions are prepared in this paper. The study is being done on manual tuning of linear quadratic regulator (LQR) parameters over genetic algorithm (GA) and particle swarm optimization (PSO) algorithm based parameters. The best optimized result is shown and discussed in this study. The comparison is being done the basis of standard deviations in the values of parameters and objective functions.\",\"PeriodicalId\":356324,\"journal\":{\"name\":\"2018 26th International Conference on Systems Engineering (ICSEng)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th International Conference on Systems Engineering (ICSEng)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENG.2018.8638205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Systems Engineering (ICSEng)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENG.2018.8638205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究说明了最新发展的现代优化技术的应用。多输入多输出控制器的设计是控制系统应用中的一大挑战。为了克服分析MIMO系统的困难,本文对各种解决方案进行了比较。基于遗传算法(GA)和粒子群优化(PSO)算法对线性二次型调节器(LQR)参数进行了人工整定研究。本文给出了最佳优化结果,并对其进行了讨论。根据参数值和目标函数值的标准偏差进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Performance Analysis for A MIMO System Based On Various Optimization Techniques
This study illustrates the applications of the recently developed modern optimization techniques. Designing a controller for multiple input multiple output is a big challenge in control system application. To overcome the difficulties of analysing MIMO system a comparative statement of various solutions are prepared in this paper. The study is being done on manual tuning of linear quadratic regulator (LQR) parameters over genetic algorithm (GA) and particle swarm optimization (PSO) algorithm based parameters. The best optimized result is shown and discussed in this study. The comparison is being done the basis of standard deviations in the values of parameters and objective functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信