有限词集的度

D. Perrin, Andrew Ryzhikov
{"title":"有限词集的度","authors":"D. Perrin, Andrew Ryzhikov","doi":"10.4230/LIPIcs.FSTTCS.2020.54","DOIUrl":null,"url":null,"abstract":"We generalize the notions of the degree and composition from uniquely decipherable codes to arbitrary finite sets of words. We prove that if X = Y ◦ Z is a composition of finite sets of words with Y complete, then d ( X ) ≤ d ( Y ) · d ( Z ), where d ( T ) is the degree of T . We also show that a finite set is synchronizing if and only if its degree equals one. This is done by considering, for an arbitrary finite set X of words, the transition monoid of an automaton recognizing X ∗ with multiplicities. We prove a number of results for such monoids, which generalize corresponding results for unambiguous monoids of relations.","PeriodicalId":175000,"journal":{"name":"Foundations of Software Technology and Theoretical Computer Science","volume":"63 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Degree of a Finite Set of Words\",\"authors\":\"D. Perrin, Andrew Ryzhikov\",\"doi\":\"10.4230/LIPIcs.FSTTCS.2020.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize the notions of the degree and composition from uniquely decipherable codes to arbitrary finite sets of words. We prove that if X = Y ◦ Z is a composition of finite sets of words with Y complete, then d ( X ) ≤ d ( Y ) · d ( Z ), where d ( T ) is the degree of T . We also show that a finite set is synchronizing if and only if its degree equals one. This is done by considering, for an arbitrary finite set X of words, the transition monoid of an automaton recognizing X ∗ with multiplicities. We prove a number of results for such monoids, which generalize corresponding results for unambiguous monoids of relations.\",\"PeriodicalId\":175000,\"journal\":{\"name\":\"Foundations of Software Technology and Theoretical Computer Science\",\"volume\":\"63 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Software Technology and Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSTTCS.2020.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Software Technology and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSTTCS.2020.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们将唯一可译码的度和组成的概念推广到任意有限的词集。证明了如果X = Y◦Z是具有Y完备的有限词集的组合,则d (X)≤d (Y)·d (Z),其中d (T)为T的度。我们还证明了一个有限集是同步的当且仅当它的度数等于1。这是通过考虑对于任意有限词集X,一个识别X *具有多重性的自动机的过渡单阵来实现的。我们证明了这类monoids的一些结果,这些结果推广了关系的无二义monoids的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Degree of a Finite Set of Words
We generalize the notions of the degree and composition from uniquely decipherable codes to arbitrary finite sets of words. We prove that if X = Y ◦ Z is a composition of finite sets of words with Y complete, then d ( X ) ≤ d ( Y ) · d ( Z ), where d ( T ) is the degree of T . We also show that a finite set is synchronizing if and only if its degree equals one. This is done by considering, for an arbitrary finite set X of words, the transition monoid of an automaton recognizing X ∗ with multiplicities. We prove a number of results for such monoids, which generalize corresponding results for unambiguous monoids of relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信