基于在线算法的多层感知器反向传播的可编程硬件实现

B. Girau, Arnaud Tisserand
{"title":"基于在线算法的多层感知器反向传播的可编程硬件实现","authors":"B. Girau, Arnaud Tisserand","doi":"10.1109/MNNFS.1996.493788","DOIUrl":null,"url":null,"abstract":"A digital hardware implementation of a whole neural network learning is described. It uses on-line arithmetic on FPGAs. The modularity of our solution avoids the development problems that occur with more usual hardware circuits. A precise analysis of the computations required by the back-propagation algorithm allows us to maximize the parallism of our implementation.","PeriodicalId":151891,"journal":{"name":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","volume":"979 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"On-line arithmetic-based reprogrammable hardware implementation of multilayer perceptron back-propagation\",\"authors\":\"B. Girau, Arnaud Tisserand\",\"doi\":\"10.1109/MNNFS.1996.493788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A digital hardware implementation of a whole neural network learning is described. It uses on-line arithmetic on FPGAs. The modularity of our solution avoids the development problems that occur with more usual hardware circuits. A precise analysis of the computations required by the back-propagation algorithm allows us to maximize the parallism of our implementation.\",\"PeriodicalId\":151891,\"journal\":{\"name\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"volume\":\"979 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Fifth International Conference on Microelectronics for Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNNFS.1996.493788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Fifth International Conference on Microelectronics for Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNNFS.1996.493788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

描述了一个全神经网络学习的数字硬件实现。它在fpga上使用在线算法。我们的解决方案的模块化避免了常见硬件电路的开发问题。对反向传播算法所需计算的精确分析使我们能够最大化实现的并行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line arithmetic-based reprogrammable hardware implementation of multilayer perceptron back-propagation
A digital hardware implementation of a whole neural network learning is described. It uses on-line arithmetic on FPGAs. The modularity of our solution avoids the development problems that occur with more usual hardware circuits. A precise analysis of the computations required by the back-propagation algorithm allows us to maximize the parallism of our implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信