通过可解释决策集预测论文接受度

Peng Bao, Weihui Hong, Xuanya Li
{"title":"通过可解释决策集预测论文接受度","authors":"Peng Bao, Weihui Hong, Xuanya Li","doi":"10.1145/3442442.3451370","DOIUrl":null,"url":null,"abstract":"Measuring the quality of research work is an essential component of the scientific process. With the ever-growing rates of articles being submitted to top-tier conferences, and the potential consistency and bias issues in the peer review process identified by scientific community, it is thus of great necessary and challenge to automatically evaluate submissions. Existing works mainly focus on exploring relevant factors and applying machine learning models to simply be accurate at predicting the acceptance of a given academic paper, while ignoring the interpretability power which is required by a wide range of applications. In this paper, we propose a framework to construct decision sets that consist of unordered if-then rules for predicting paper acceptance. We formalize decision set learning problem via a joint objective function that simultaneously optimize accuracy and interpretability of the rules, rather than organizing them in a hierarchy. We evaluate the effectiveness of the proposed framework by applying it on a public scientific peer reviews dataset. Experimental results demonstrate that the learned interpretable decision sets by our framework performs on par with state-of-the-art classification algorithms which optimize exclusively for predictive accuracy and much more interpretable than rule-based methods.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Predicting Paper Acceptance via Interpretable Decision Sets\",\"authors\":\"Peng Bao, Weihui Hong, Xuanya Li\",\"doi\":\"10.1145/3442442.3451370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring the quality of research work is an essential component of the scientific process. With the ever-growing rates of articles being submitted to top-tier conferences, and the potential consistency and bias issues in the peer review process identified by scientific community, it is thus of great necessary and challenge to automatically evaluate submissions. Existing works mainly focus on exploring relevant factors and applying machine learning models to simply be accurate at predicting the acceptance of a given academic paper, while ignoring the interpretability power which is required by a wide range of applications. In this paper, we propose a framework to construct decision sets that consist of unordered if-then rules for predicting paper acceptance. We formalize decision set learning problem via a joint objective function that simultaneously optimize accuracy and interpretability of the rules, rather than organizing them in a hierarchy. We evaluate the effectiveness of the proposed framework by applying it on a public scientific peer reviews dataset. Experimental results demonstrate that the learned interpretable decision sets by our framework performs on par with state-of-the-art classification algorithms which optimize exclusively for predictive accuracy and much more interpretable than rule-based methods.\",\"PeriodicalId\":129420,\"journal\":{\"name\":\"Companion Proceedings of the Web Conference 2021\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442442.3451370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

衡量研究工作的质量是科学过程的一个重要组成部分。随着一流会议论文投稿率的不断增长,以及同行评议过程中潜在的一致性和偏倚问题被科学界发现,对投稿进行自动评估是非常必要和具有挑战性的。现有的工作主要集中在探索相关因素和应用机器学习模型来简单准确地预测给定学术论文的接受程度,而忽略了广泛应用所需的可解释性能力。在本文中,我们提出了一个框架来构建由无序if-then规则组成的决策集,用于预测论文的接受程度。我们通过一个联合目标函数来形式化决策集学习问题,该函数同时优化规则的准确性和可解释性,而不是将它们组织在层次结构中。我们通过将所提出的框架应用于公共科学同行评审数据集来评估其有效性。实验结果表明,通过我们的框架学习的可解释决策集与最先进的分类算法相当,这些算法专门针对预测准确性进行优化,并且比基于规则的方法更具可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Paper Acceptance via Interpretable Decision Sets
Measuring the quality of research work is an essential component of the scientific process. With the ever-growing rates of articles being submitted to top-tier conferences, and the potential consistency and bias issues in the peer review process identified by scientific community, it is thus of great necessary and challenge to automatically evaluate submissions. Existing works mainly focus on exploring relevant factors and applying machine learning models to simply be accurate at predicting the acceptance of a given academic paper, while ignoring the interpretability power which is required by a wide range of applications. In this paper, we propose a framework to construct decision sets that consist of unordered if-then rules for predicting paper acceptance. We formalize decision set learning problem via a joint objective function that simultaneously optimize accuracy and interpretability of the rules, rather than organizing them in a hierarchy. We evaluate the effectiveness of the proposed framework by applying it on a public scientific peer reviews dataset. Experimental results demonstrate that the learned interpretable decision sets by our framework performs on par with state-of-the-art classification algorithms which optimize exclusively for predictive accuracy and much more interpretable than rule-based methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信