特征提取与选择相结合的监督分类算法比较:在汽轮发电机转子故障检测中的应用

A. Bacchus, M. Biet, L. Macaire, Y. Le Menach, A. Tounzi
{"title":"特征提取与选择相结合的监督分类算法比较:在汽轮发电机转子故障检测中的应用","authors":"A. Bacchus, M. Biet, L. Macaire, Y. Le Menach, A. Tounzi","doi":"10.1109/DEMPED.2013.6645770","DOIUrl":null,"url":null,"abstract":"The goal of this paper consists in applying pattern recognition methods to turbo-generators. Previous works have shown that a monitor, thanks to pattern recognition, is practical on asynchronous machines. This procedure has rarely taken advantage of these methods for turbogenerator. The statistical model has been obtained from harmonics extracted from flux probes and from stator current and voltage. For this purpose, the main way is to build a learning matrix to predict the functional state of a new measurement. Finally, three classifiers have been compared: k Nearest Neighbors, Linear Discriminant Analysis and Support Vector Machines. The best classification result is obtained by Linear Discriminant Analysis combined with Factorial Discriminant Analysis achieving a score of 84.6%.","PeriodicalId":425644,"journal":{"name":"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Comparison of supervised classification algorithms combined with feature extraction and selection: Application to a turbo-generator rotor fault detection\",\"authors\":\"A. Bacchus, M. Biet, L. Macaire, Y. Le Menach, A. Tounzi\",\"doi\":\"10.1109/DEMPED.2013.6645770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this paper consists in applying pattern recognition methods to turbo-generators. Previous works have shown that a monitor, thanks to pattern recognition, is practical on asynchronous machines. This procedure has rarely taken advantage of these methods for turbogenerator. The statistical model has been obtained from harmonics extracted from flux probes and from stator current and voltage. For this purpose, the main way is to build a learning matrix to predict the functional state of a new measurement. Finally, three classifiers have been compared: k Nearest Neighbors, Linear Discriminant Analysis and Support Vector Machines. The best classification result is obtained by Linear Discriminant Analysis combined with Factorial Discriminant Analysis achieving a score of 84.6%.\",\"PeriodicalId\":425644,\"journal\":{\"name\":\"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEMPED.2013.6645770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2013.6645770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文的目的在于将模式识别方法应用于汽轮发电机组。先前的工作表明,由于模式识别,监视器在异步机器上是实用的。该程序很少利用这些方法对汽轮发电机。从磁通探头提取的谐波和定子电流、电压提取的谐波得到了统计模型。为此,主要的方法是建立一个学习矩阵来预测新测量的功能状态。最后,比较了三种分类器:k近邻、线性判别分析和支持向量机。线性判别分析结合析因判别分析的分类效果最好,分类分值为84.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of supervised classification algorithms combined with feature extraction and selection: Application to a turbo-generator rotor fault detection
The goal of this paper consists in applying pattern recognition methods to turbo-generators. Previous works have shown that a monitor, thanks to pattern recognition, is practical on asynchronous machines. This procedure has rarely taken advantage of these methods for turbogenerator. The statistical model has been obtained from harmonics extracted from flux probes and from stator current and voltage. For this purpose, the main way is to build a learning matrix to predict the functional state of a new measurement. Finally, three classifiers have been compared: k Nearest Neighbors, Linear Discriminant Analysis and Support Vector Machines. The best classification result is obtained by Linear Discriminant Analysis combined with Factorial Discriminant Analysis achieving a score of 84.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信