基于k-NN的水果自动识别与分类

A. Nosseir, S. Ahmed
{"title":"基于k-NN的水果自动识别与分类","authors":"A. Nosseir, S. Ahmed","doi":"10.1145/3220267.3220278","DOIUrl":null,"url":null,"abstract":"Most fruit recognition techniques combine different analysis method like color-based, shaped-based, size-based and texture-based. This work classifies the fruits features based on the color RBG values and texture values of the first statistical order and second statistical of the Gray Level Co-occurrence Matrix (GLCM). It applies different classifies Fine K-NN, Medium K-NN, Coarse K-NN, Cosine K-NN, Cubic K-NN, Weighted K-NN. The accuracy of each classifier is 96.3%, 93.8%, 25%, 83.8%, 90%, and 95% respectively. The system is evaluated with 46 images by amateur photographers of seasonal fruits at the time namely, strawberry, apply and banana. 100% of these pictures were recognised correctly.","PeriodicalId":177522,"journal":{"name":"International Conference on Software and Information Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Identification and Classifications for Fruits Using k-NN\",\"authors\":\"A. Nosseir, S. Ahmed\",\"doi\":\"10.1145/3220267.3220278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most fruit recognition techniques combine different analysis method like color-based, shaped-based, size-based and texture-based. This work classifies the fruits features based on the color RBG values and texture values of the first statistical order and second statistical of the Gray Level Co-occurrence Matrix (GLCM). It applies different classifies Fine K-NN, Medium K-NN, Coarse K-NN, Cosine K-NN, Cubic K-NN, Weighted K-NN. The accuracy of each classifier is 96.3%, 93.8%, 25%, 83.8%, 90%, and 95% respectively. The system is evaluated with 46 images by amateur photographers of seasonal fruits at the time namely, strawberry, apply and banana. 100% of these pictures were recognised correctly.\",\"PeriodicalId\":177522,\"journal\":{\"name\":\"International Conference on Software and Information Engineering\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Software and Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3220267.3220278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Software and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3220267.3220278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大多数水果识别技术结合了不同的分析方法,如基于颜色的、基于形状的、基于尺寸的和基于纹理的。本文基于灰度共生矩阵(GLCM)的一统计阶和二统计阶的颜色RBG值和纹理值对水果特征进行分类。它应用了不同的分类:精细K-NN,中等K-NN,粗K-NN,余弦K-NN,三次K-NN,加权K-NN。各分类器的准确率分别为96.3%、93.8%、25%、83.8%、90%和95%。该系统使用了46张由业余摄影师拍摄的时令水果的照片进行评估,这些水果包括草莓、草莓和香蕉。这些图片100%被正确识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Identification and Classifications for Fruits Using k-NN
Most fruit recognition techniques combine different analysis method like color-based, shaped-based, size-based and texture-based. This work classifies the fruits features based on the color RBG values and texture values of the first statistical order and second statistical of the Gray Level Co-occurrence Matrix (GLCM). It applies different classifies Fine K-NN, Medium K-NN, Coarse K-NN, Cosine K-NN, Cubic K-NN, Weighted K-NN. The accuracy of each classifier is 96.3%, 93.8%, 25%, 83.8%, 90%, and 95% respectively. The system is evaluated with 46 images by amateur photographers of seasonal fruits at the time namely, strawberry, apply and banana. 100% of these pictures were recognised correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信