{"title":"手指屈曲图像:基于生理特征提取和分层投票的EEG分类","authors":"Daniel Furman, Roi Reichart, H. Pratt","doi":"10.1109/IWW-BCI.2016.7457445","DOIUrl":null,"url":null,"abstract":"Accurate electroencephalography (EEG) classification of finger flexion imagery would endow non-invasive brainmachine interfaces (BMIs) with a much richer control repertoire. Traditionally, it has been assumed that non-invasive methods lack the resolution required for success on such a fine discrimination task. In this study, we challenged this assumption. EEG was acquired while subjects imagined performing individual and bimanual finger flexions. A new method of spatiotemporal and spectral feature extraction was applied, and multi-class support vector machine (SVM) classifiers were trained. Predictions and probabilities then served as inputs to a novel voting scheme, which output the system decision. The present approach achieved a mean population (n=15) accuracy of 30.86±1.76%, nearly twice the chance guessing level (16.71±1.68%) for the six-class task evaluated. Finger imagery is thus shown to be classifiable through EEG analysis alone.","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"11 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Finger flexion imagery: EEG classification through physiologically-inspired feature extraction and hierarchical voting\",\"authors\":\"Daniel Furman, Roi Reichart, H. Pratt\",\"doi\":\"10.1109/IWW-BCI.2016.7457445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate electroencephalography (EEG) classification of finger flexion imagery would endow non-invasive brainmachine interfaces (BMIs) with a much richer control repertoire. Traditionally, it has been assumed that non-invasive methods lack the resolution required for success on such a fine discrimination task. In this study, we challenged this assumption. EEG was acquired while subjects imagined performing individual and bimanual finger flexions. A new method of spatiotemporal and spectral feature extraction was applied, and multi-class support vector machine (SVM) classifiers were trained. Predictions and probabilities then served as inputs to a novel voting scheme, which output the system decision. The present approach achieved a mean population (n=15) accuracy of 30.86±1.76%, nearly twice the chance guessing level (16.71±1.68%) for the six-class task evaluated. Finger imagery is thus shown to be classifiable through EEG analysis alone.\",\"PeriodicalId\":208670,\"journal\":{\"name\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"11 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2016.7457445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finger flexion imagery: EEG classification through physiologically-inspired feature extraction and hierarchical voting
Accurate electroencephalography (EEG) classification of finger flexion imagery would endow non-invasive brainmachine interfaces (BMIs) with a much richer control repertoire. Traditionally, it has been assumed that non-invasive methods lack the resolution required for success on such a fine discrimination task. In this study, we challenged this assumption. EEG was acquired while subjects imagined performing individual and bimanual finger flexions. A new method of spatiotemporal and spectral feature extraction was applied, and multi-class support vector machine (SVM) classifiers were trained. Predictions and probabilities then served as inputs to a novel voting scheme, which output the system decision. The present approach achieved a mean population (n=15) accuracy of 30.86±1.76%, nearly twice the chance guessing level (16.71±1.68%) for the six-class task evaluated. Finger imagery is thus shown to be classifiable through EEG analysis alone.