如何(可能)衬托多媒体安全?

F. Balado, T. Fournel
{"title":"如何(可能)衬托多媒体安全?","authors":"F. Balado, T. Fournel","doi":"10.1109/WIO.2014.6933295","DOIUrl":null,"url":null,"abstract":"Multimedia security can be foiled thanks to Slepian's permutation modulation. Originally proposed in 1965 for standard problems of channel and source coding in communications, permutation codes can also provide optimum solutions in two relevant fields: steganography (foiling hidden information detection tests) and counterforensics (foiling forensic detection tests). In the first scenario, permutation codes have been shown to implement optimum perfect universal steganography (that is to say, steganography with maximum information embedding rate, undetectable and only relying on the empirical distribution of the host) for histogram-based hidden information detectors. In the second scenario, permutation codes have been shown to implement minimum-distortion perfect counterforensics (that is to say, forgeries which are undetectable and as close as possible to a target forgery) for histogram-based forensic detectors. Interestingly, both of these developments have revealed connections with compression through theoretical bounds from the mathematical theory of information. In steganography, the long-acknowledged duality between perfect steganography and lossless compression has been made explicit by permutation coding. On the other hand, a connection between counterforensics, lossy compression and histogram specification is also shown.","PeriodicalId":183646,"journal":{"name":"2014 13th Workshop on Information Optics (WIO)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"How to (possibly) foil multimedia security?\",\"authors\":\"F. Balado, T. Fournel\",\"doi\":\"10.1109/WIO.2014.6933295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimedia security can be foiled thanks to Slepian's permutation modulation. Originally proposed in 1965 for standard problems of channel and source coding in communications, permutation codes can also provide optimum solutions in two relevant fields: steganography (foiling hidden information detection tests) and counterforensics (foiling forensic detection tests). In the first scenario, permutation codes have been shown to implement optimum perfect universal steganography (that is to say, steganography with maximum information embedding rate, undetectable and only relying on the empirical distribution of the host) for histogram-based hidden information detectors. In the second scenario, permutation codes have been shown to implement minimum-distortion perfect counterforensics (that is to say, forgeries which are undetectable and as close as possible to a target forgery) for histogram-based forensic detectors. Interestingly, both of these developments have revealed connections with compression through theoretical bounds from the mathematical theory of information. In steganography, the long-acknowledged duality between perfect steganography and lossless compression has been made explicit by permutation coding. On the other hand, a connection between counterforensics, lossy compression and histogram specification is also shown.\",\"PeriodicalId\":183646,\"journal\":{\"name\":\"2014 13th Workshop on Information Optics (WIO)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 13th Workshop on Information Optics (WIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIO.2014.6933295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 13th Workshop on Information Optics (WIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIO.2014.6933295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于Slepian的排列调制,多媒体安全可以被挫败。排列码最初是在1965年提出的,用于通信中信道和源编码的标准问题,它还可以在两个相关领域提供最佳解决方案:隐写(阻止隐藏信息检测测试)和反取证(阻止取证检测测试)。在第一种情况下,排列码已被证明可以实现基于直方图的隐藏信息检测器的最佳完美通用隐写(即具有最大信息嵌入率,不可检测且仅依赖于主机的经验分布的隐写)。在第二种情况下,排列代码已经被证明可以为基于直方图的取证检测器实现最小失真的完美反取证(也就是说,伪造物是无法检测到的,并且尽可能接近目标伪造物)。有趣的是,这两个发展都揭示了通过信息数学理论的理论界限与压缩的联系。在隐写术中,长期以来公认的完美隐写和无损压缩之间的对偶性通过排列编码得到了明确的体现。另一方面,反取证、有损压缩和直方图规范之间的联系也被显示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to (possibly) foil multimedia security?
Multimedia security can be foiled thanks to Slepian's permutation modulation. Originally proposed in 1965 for standard problems of channel and source coding in communications, permutation codes can also provide optimum solutions in two relevant fields: steganography (foiling hidden information detection tests) and counterforensics (foiling forensic detection tests). In the first scenario, permutation codes have been shown to implement optimum perfect universal steganography (that is to say, steganography with maximum information embedding rate, undetectable and only relying on the empirical distribution of the host) for histogram-based hidden information detectors. In the second scenario, permutation codes have been shown to implement minimum-distortion perfect counterforensics (that is to say, forgeries which are undetectable and as close as possible to a target forgery) for histogram-based forensic detectors. Interestingly, both of these developments have revealed connections with compression through theoretical bounds from the mathematical theory of information. In steganography, the long-acknowledged duality between perfect steganography and lossless compression has been made explicit by permutation coding. On the other hand, a connection between counterforensics, lossy compression and histogram specification is also shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信