基于鲁棒核回归的遥感数字图像薄云去除

Guohong Liang, Ying Li
{"title":"基于鲁棒核回归的遥感数字图像薄云去除","authors":"Guohong Liang, Ying Li","doi":"10.1109/ICOT.2014.6956636","DOIUrl":null,"url":null,"abstract":"This paper suggests a thin cloud removing approach of remote sensing image based on robust kernel regression. Due to the influence of atmosphere condition, cloud cover is one of the most disturbance factors in remote sensing image. So cloud removal is a very important step for improving the quality of the image before making analysis. Because thin cloud is the low frequency component in remote sensing images, thin cloud can be removed efficiently by using the method introduced in this paper.","PeriodicalId":343641,"journal":{"name":"2014 International Conference on Orange Technologies","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Removing thin cloud from remote sensing digital images based on robust kernel regression\",\"authors\":\"Guohong Liang, Ying Li\",\"doi\":\"10.1109/ICOT.2014.6956636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper suggests a thin cloud removing approach of remote sensing image based on robust kernel regression. Due to the influence of atmosphere condition, cloud cover is one of the most disturbance factors in remote sensing image. So cloud removal is a very important step for improving the quality of the image before making analysis. Because thin cloud is the low frequency component in remote sensing images, thin cloud can be removed efficiently by using the method introduced in this paper.\",\"PeriodicalId\":343641,\"journal\":{\"name\":\"2014 International Conference on Orange Technologies\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Orange Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOT.2014.6956636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Orange Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2014.6956636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于鲁棒核回归的遥感影像薄云去除方法。由于大气条件的影响,云量是遥感影像中干扰最大的因素之一。因此,在进行分析之前,去除云是提高图像质量的一个非常重要的步骤。由于薄云是遥感图像中的低频成分,采用本文提出的方法可以有效地去除薄云。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removing thin cloud from remote sensing digital images based on robust kernel regression
This paper suggests a thin cloud removing approach of remote sensing image based on robust kernel regression. Due to the influence of atmosphere condition, cloud cover is one of the most disturbance factors in remote sensing image. So cloud removal is a very important step for improving the quality of the image before making analysis. Because thin cloud is the low frequency component in remote sensing images, thin cloud can be removed efficiently by using the method introduced in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信