11.1采用64字行层bic技术的512Gb 3b/cell闪存

Ryuji Yamashita, Sagar Magia, T. Higuchi, Kazuhide Yoneya, T. Yamamura, Hiroyuki Mizukoshi, S. Zaitsu, Minoru Yamashita, Shunichi Toyama, Norihiro Kamae, Juan Lee, Shuo Chen, Jiawei Tao, William Mak, Xiaohua Zhang, Ying Yu, Yuko Utsunomiya, Yosuke Kato, Manabu Sakai, Masahide Matsumoto, H. Chibvongodze, Naoki Ookuma, Hiroki Yabe, Subodh Taigor, Rangarao Samineni, T. Kodama, Y. Kamata, Y. Namai, Jonathan Huynh, Sung-En Wang, Y. He, T. Pham, V. Saraf, Akshay Petkar, Mitsuyuki Watanabe, Koichiro Hayashi, Prashant Swarnkar, H. Miwa, Adit Pradhan, Sulagna Dey, Debasis Dwibedy, Thushara Xavier, Muralikrishna Balaga, Samiksha Agarwal, Swaroop Kulkarni, Zameer Papasaheb, Sahil Deora, Patrick Hong, Meiling Wei, G. Balakrishnan, Takuya Ariki, Kapil Verma, C. Siau, Yingda Dong, Ching-Huang Lu, Toru Miwa, F. Moogat
{"title":"11.1采用64字行层bic技术的512Gb 3b/cell闪存","authors":"Ryuji Yamashita, Sagar Magia, T. Higuchi, Kazuhide Yoneya, T. Yamamura, Hiroyuki Mizukoshi, S. Zaitsu, Minoru Yamashita, Shunichi Toyama, Norihiro Kamae, Juan Lee, Shuo Chen, Jiawei Tao, William Mak, Xiaohua Zhang, Ying Yu, Yuko Utsunomiya, Yosuke Kato, Manabu Sakai, Masahide Matsumoto, H. Chibvongodze, Naoki Ookuma, Hiroki Yabe, Subodh Taigor, Rangarao Samineni, T. Kodama, Y. Kamata, Y. Namai, Jonathan Huynh, Sung-En Wang, Y. He, T. Pham, V. Saraf, Akshay Petkar, Mitsuyuki Watanabe, Koichiro Hayashi, Prashant Swarnkar, H. Miwa, Adit Pradhan, Sulagna Dey, Debasis Dwibedy, Thushara Xavier, Muralikrishna Balaga, Samiksha Agarwal, Swaroop Kulkarni, Zameer Papasaheb, Sahil Deora, Patrick Hong, Meiling Wei, G. Balakrishnan, Takuya Ariki, Kapil Verma, C. Siau, Yingda Dong, Ching-Huang Lu, Toru Miwa, F. Moogat","doi":"10.1109/ISSCC.2017.7870328","DOIUrl":null,"url":null,"abstract":"High floating-gate (FG) to FG coupling and lithography limitations have been preventing 2D-NAND flash from further reduction in die size, (e.g., there is no ISSCC paper discussing a 3b/cell 2D-NAND after 2013 [1,2]). Alternatively, since high-density multi-stacked 3D-flash was first introduced as BiCS flash [3], recent dramatic innovations in 3D-flash technologies are rapidly boosting bit density by increasing the number of stacked layers. The first 3b/cell 3D-flash used 32 layers in 2015 [4], and reached 48 layers in 2016 [5]. Also, density as high as 2.62 and 4.29Gb/mm2 [5,6] were achieved, as shown in Fig. 11.1.7. This rapid scaling of 3D-flash technologies is possible since it is free from the lithography limitation mentioned above. This paper describes a 512Gbit 3b/cell flash fabricated with a 64-word-line-layer BiCS technology. In this work, we implemented three technologies: (1) four-block even-odd-combined row decoding to effectively address the increase of stacked layers; (2) unselected string pre-charge operation to improve endurance and reliability, and; (3) shielded BL current sensing to enhance read throughput. Figure 11.1.1 shows the die photo and the summary of key features.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"11.1 A 512Gb 3b/cell flash memory on 64-word-line-layer BiCS technology\",\"authors\":\"Ryuji Yamashita, Sagar Magia, T. Higuchi, Kazuhide Yoneya, T. Yamamura, Hiroyuki Mizukoshi, S. Zaitsu, Minoru Yamashita, Shunichi Toyama, Norihiro Kamae, Juan Lee, Shuo Chen, Jiawei Tao, William Mak, Xiaohua Zhang, Ying Yu, Yuko Utsunomiya, Yosuke Kato, Manabu Sakai, Masahide Matsumoto, H. Chibvongodze, Naoki Ookuma, Hiroki Yabe, Subodh Taigor, Rangarao Samineni, T. Kodama, Y. Kamata, Y. Namai, Jonathan Huynh, Sung-En Wang, Y. He, T. Pham, V. Saraf, Akshay Petkar, Mitsuyuki Watanabe, Koichiro Hayashi, Prashant Swarnkar, H. Miwa, Adit Pradhan, Sulagna Dey, Debasis Dwibedy, Thushara Xavier, Muralikrishna Balaga, Samiksha Agarwal, Swaroop Kulkarni, Zameer Papasaheb, Sahil Deora, Patrick Hong, Meiling Wei, G. Balakrishnan, Takuya Ariki, Kapil Verma, C. Siau, Yingda Dong, Ching-Huang Lu, Toru Miwa, F. Moogat\",\"doi\":\"10.1109/ISSCC.2017.7870328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High floating-gate (FG) to FG coupling and lithography limitations have been preventing 2D-NAND flash from further reduction in die size, (e.g., there is no ISSCC paper discussing a 3b/cell 2D-NAND after 2013 [1,2]). Alternatively, since high-density multi-stacked 3D-flash was first introduced as BiCS flash [3], recent dramatic innovations in 3D-flash technologies are rapidly boosting bit density by increasing the number of stacked layers. The first 3b/cell 3D-flash used 32 layers in 2015 [4], and reached 48 layers in 2016 [5]. Also, density as high as 2.62 and 4.29Gb/mm2 [5,6] were achieved, as shown in Fig. 11.1.7. This rapid scaling of 3D-flash technologies is possible since it is free from the lithography limitation mentioned above. This paper describes a 512Gbit 3b/cell flash fabricated with a 64-word-line-layer BiCS technology. In this work, we implemented three technologies: (1) four-block even-odd-combined row decoding to effectively address the increase of stacked layers; (2) unselected string pre-charge operation to improve endurance and reliability, and; (3) shielded BL current sensing to enhance read throughput. Figure 11.1.1 shows the die photo and the summary of key features.\",\"PeriodicalId\":269679,\"journal\":{\"name\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Solid-State Circuits Conference (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2017.7870328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

高浮栅(FG)到FG耦合和光刻限制一直阻碍着2D-NAND闪存进一步缩小芯片尺寸(例如,2013年之后没有ISSCC论文讨论3b/cell 2D-NAND[1,2])。另外,由于高密度多堆叠3d闪存最初是作为bic闪存推出的[3],最近3d闪存技术的巨大创新通过增加堆叠层的数量迅速提高了比特密度。2015年第一批3b/cell 3D-flash使用32层[4],2016年达到48层[5]。密度最高可达2.62和4.29Gb/mm2[5,6],如图11.1.7所示。3d闪存技术的快速扩展是可能的,因为它不受上面提到的光刻限制。本文介绍了一种采用64字线层bic技术制作的512Gbit / 3b/cell闪存。在这项工作中,我们实现了三种技术:(1)四块偶奇组合行解码,以有效解决堆叠层的增加;(2)不选管柱预充液作业,提高耐久性和可靠性;(3)屏蔽式BL电流传感,提高读取吞吐量。图11.1.1显示了模具照片和主要特性总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
11.1 A 512Gb 3b/cell flash memory on 64-word-line-layer BiCS technology
High floating-gate (FG) to FG coupling and lithography limitations have been preventing 2D-NAND flash from further reduction in die size, (e.g., there is no ISSCC paper discussing a 3b/cell 2D-NAND after 2013 [1,2]). Alternatively, since high-density multi-stacked 3D-flash was first introduced as BiCS flash [3], recent dramatic innovations in 3D-flash technologies are rapidly boosting bit density by increasing the number of stacked layers. The first 3b/cell 3D-flash used 32 layers in 2015 [4], and reached 48 layers in 2016 [5]. Also, density as high as 2.62 and 4.29Gb/mm2 [5,6] were achieved, as shown in Fig. 11.1.7. This rapid scaling of 3D-flash technologies is possible since it is free from the lithography limitation mentioned above. This paper describes a 512Gbit 3b/cell flash fabricated with a 64-word-line-layer BiCS technology. In this work, we implemented three technologies: (1) four-block even-odd-combined row decoding to effectively address the increase of stacked layers; (2) unselected string pre-charge operation to improve endurance and reliability, and; (3) shielded BL current sensing to enhance read throughput. Figure 11.1.1 shows the die photo and the summary of key features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信