{"title":"泰勒移位的乘法复杂度和替换法的一种新方法","authors":"A. Schonhage","doi":"10.1109/SFCS.1998.743445","DOIUrl":null,"url":null,"abstract":"Let C/sub n/=C/sub n/(K) denote the minimum number of essential multiplications/divisions required for shifting a general n-th degree polynomial A(t)=/spl Sigma/a/sub i/t/sup i/ to some new origin x, which means to compute the coefficients b/sub k/ of the Taylor expansion A(x+t)=B(t)=/spl Sigma/b/sub k/t/sup k/ as elements of K(x,a/sub 0/,...,a/sub n/) with indeterminates a/sub i/ and x over some ground field K. For K of characteristic zero, a new refined version of the substitution method combined with a dimension argument enables us to prove C/sub n//spl ges/n+[n/2]-1 opposed to an upper bound of C/sub n//spl les/2n+[n/2]-4 valid for all n/spl ges/3.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multiplicative complexity of Taylor shifts and a new twist of the substitution method\",\"authors\":\"A. Schonhage\",\"doi\":\"10.1109/SFCS.1998.743445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let C/sub n/=C/sub n/(K) denote the minimum number of essential multiplications/divisions required for shifting a general n-th degree polynomial A(t)=/spl Sigma/a/sub i/t/sup i/ to some new origin x, which means to compute the coefficients b/sub k/ of the Taylor expansion A(x+t)=B(t)=/spl Sigma/b/sub k/t/sup k/ as elements of K(x,a/sub 0/,...,a/sub n/) with indeterminates a/sub i/ and x over some ground field K. For K of characteristic zero, a new refined version of the substitution method combined with a dimension argument enables us to prove C/sub n//spl ges/n+[n/2]-1 opposed to an upper bound of C/sub n//spl les/2n+[n/2]-4 valid for all n/spl ges/3.\",\"PeriodicalId\":228145,\"journal\":{\"name\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1998.743445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
设C/下标n/=C/下标n/(K)表示将一般n次多项式a (t)=/spl Sigma/a/下标i/t/sup i/移动到某个新原点x所需的基本乘法/除法的最小次数,这意味着计算泰勒展开的系数b/下标K /a (x+t)= b (t)=/spl Sigma/b/下标K /t/sup K /作为K(x,a/下标0/,…对于特征为零的K,结合维数参数的一种新的改进版替换方法使我们能够证明C/sub n//spl les/ n+[n/2]-1与C/sub n//spl les/2n+[n/2]-4的上界对所有n/spl ges/3有效。
Multiplicative complexity of Taylor shifts and a new twist of the substitution method
Let C/sub n/=C/sub n/(K) denote the minimum number of essential multiplications/divisions required for shifting a general n-th degree polynomial A(t)=/spl Sigma/a/sub i/t/sup i/ to some new origin x, which means to compute the coefficients b/sub k/ of the Taylor expansion A(x+t)=B(t)=/spl Sigma/b/sub k/t/sup k/ as elements of K(x,a/sub 0/,...,a/sub n/) with indeterminates a/sub i/ and x over some ground field K. For K of characteristic zero, a new refined version of the substitution method combined with a dimension argument enables us to prove C/sub n//spl ges/n+[n/2]-1 opposed to an upper bound of C/sub n//spl les/2n+[n/2]-4 valid for all n/spl ges/3.