基于粒子群的智能神经网络预测优化

Xuezhi Lei
{"title":"基于粒子群的智能神经网络预测优化","authors":"Xuezhi Lei","doi":"10.1109/ICVRIS.2018.00104","DOIUrl":null,"url":null,"abstract":"In view of the disadvantages of slow convergence and local optimality in traditional neural network learning algorithms, a neural network nonlinear function fitting system with improved particle swarm optimization (PSO) is designed for intelligent prediction accuracy. The intelligent optimization scheme integrates the immune PSO algorithm with BP neural network theory, and realizes the nonlinear function fitting algorithm of BP neural network, based on IPSO algorithm optimization. The new fitting algorithm first determines the structure of the BP neural network, and optimizes the initial weight and threshold with IPSO algorithm. Then, it improves the intelligent prediction method to verify the performance. Numerical experiments show that the algorithm proposed in this paper improves the fitting ability of BP neural network, reduces the fitting error and improves the fitting accuracy.","PeriodicalId":152317,"journal":{"name":"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"59 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Intelligent Neural Network Prediction Based on Particle Swarm\",\"authors\":\"Xuezhi Lei\",\"doi\":\"10.1109/ICVRIS.2018.00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the disadvantages of slow convergence and local optimality in traditional neural network learning algorithms, a neural network nonlinear function fitting system with improved particle swarm optimization (PSO) is designed for intelligent prediction accuracy. The intelligent optimization scheme integrates the immune PSO algorithm with BP neural network theory, and realizes the nonlinear function fitting algorithm of BP neural network, based on IPSO algorithm optimization. The new fitting algorithm first determines the structure of the BP neural network, and optimizes the initial weight and threshold with IPSO algorithm. Then, it improves the intelligent prediction method to verify the performance. Numerical experiments show that the algorithm proposed in this paper improves the fitting ability of BP neural network, reduces the fitting error and improves the fitting accuracy.\",\"PeriodicalId\":152317,\"journal\":{\"name\":\"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"59 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS.2018.00104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS.2018.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统神经网络学习算法收敛速度慢、局部最优的缺点,设计了一种基于改进粒子群算法(PSO)的神经网络非线性函数拟合系统,以提高预测精度。该智能优化方案将免疫粒子群算法与BP神经网络理论相结合,在IPSO算法优化的基础上实现了BP神经网络的非线性函数拟合算法。新的拟合算法首先确定BP神经网络的结构,并用IPSO算法对初始权值和阈值进行优化。然后,对智能预测方法进行改进,验证其性能。数值实验表明,本文提出的算法提高了BP神经网络的拟合能力,减小了拟合误差,提高了拟合精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Intelligent Neural Network Prediction Based on Particle Swarm
In view of the disadvantages of slow convergence and local optimality in traditional neural network learning algorithms, a neural network nonlinear function fitting system with improved particle swarm optimization (PSO) is designed for intelligent prediction accuracy. The intelligent optimization scheme integrates the immune PSO algorithm with BP neural network theory, and realizes the nonlinear function fitting algorithm of BP neural network, based on IPSO algorithm optimization. The new fitting algorithm first determines the structure of the BP neural network, and optimizes the initial weight and threshold with IPSO algorithm. Then, it improves the intelligent prediction method to verify the performance. Numerical experiments show that the algorithm proposed in this paper improves the fitting ability of BP neural network, reduces the fitting error and improves the fitting accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信