二阶经济可行性问题的投影和缩放算法的实现

Javier F. Pena, Negar Soheili
{"title":"二阶经济可行性问题的投影和缩放算法的实现","authors":"Javier F. Pena, Negar Soheili","doi":"10.1080/10556788.2022.2119234","DOIUrl":null,"url":null,"abstract":"This paper documents a computational implementation of a projection and rescaling algorithm for solving one of the alternative feasibility problems where L is a linear subspace in , is its orthogonal complement, and is the interior of a direct product of second order cones. The gist of the projection and rescaling algorithm is to enhance a low-cost first-order method (a basic procedure) with an adaptive reconditioning transformation (a rescaling step). We give a full description of a Python implementation of this algorithm and present multiple sets of numerical experiments on synthetic problem instances with varied levels of conditioning. Our computational experiments provide promising evidence of the effectiveness of the projection and rescaling algorithm. Our Python code is publicly available. Furthermore, the simplicity of the algorithm makes a computational implementation in other environments completely straightforward.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of a projection and rescaling algorithm for second-order conic feasibility problems\",\"authors\":\"Javier F. Pena, Negar Soheili\",\"doi\":\"10.1080/10556788.2022.2119234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper documents a computational implementation of a projection and rescaling algorithm for solving one of the alternative feasibility problems where L is a linear subspace in , is its orthogonal complement, and is the interior of a direct product of second order cones. The gist of the projection and rescaling algorithm is to enhance a low-cost first-order method (a basic procedure) with an adaptive reconditioning transformation (a rescaling step). We give a full description of a Python implementation of this algorithm and present multiple sets of numerical experiments on synthetic problem instances with varied levels of conditioning. Our computational experiments provide promising evidence of the effectiveness of the projection and rescaling algorithm. Our Python code is publicly available. Furthermore, the simplicity of the algorithm makes a computational implementation in other environments completely straightforward.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2119234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2119234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种投影和缩放算法的计算实现,用于解决一个备选可行性问题,其中L是线性子空间,是它的正交补,是二阶锥的直积的内部。投影和缩放算法的核心是利用自适应重构变换(缩放步骤)对低成本的一阶方法(基本步骤)进行改进。我们给出了该算法的Python实现的完整描述,并在具有不同水平条件的合成问题实例上给出了多组数值实验。我们的计算实验为投影和重新缩放算法的有效性提供了有希望的证据。我们的Python代码是公开的。此外,该算法的简单性使得在其他环境中的计算实现完全简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of a projection and rescaling algorithm for second-order conic feasibility problems
This paper documents a computational implementation of a projection and rescaling algorithm for solving one of the alternative feasibility problems where L is a linear subspace in , is its orthogonal complement, and is the interior of a direct product of second order cones. The gist of the projection and rescaling algorithm is to enhance a low-cost first-order method (a basic procedure) with an adaptive reconditioning transformation (a rescaling step). We give a full description of a Python implementation of this algorithm and present multiple sets of numerical experiments on synthetic problem instances with varied levels of conditioning. Our computational experiments provide promising evidence of the effectiveness of the projection and rescaling algorithm. Our Python code is publicly available. Furthermore, the simplicity of the algorithm makes a computational implementation in other environments completely straightforward.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信