Haidar A. Almubarak, R. Stanley, Peng Guo, L. Long, Sameer Kiran Antani, G. Thoma, R. Zuna, S. R. Frazier, W. Stoecker
{"title":"一种混合深度学习和手工特征的宫颈癌数字组织学图像分类方法","authors":"Haidar A. Almubarak, R. Stanley, Peng Guo, L. Long, Sameer Kiran Antani, G. Thoma, R. Zuna, S. R. Frazier, W. Stoecker","doi":"10.4018/IJHISI.2019040105","DOIUrl":null,"url":null,"abstract":"Cervical cancer is the second most common cancer affecting women worldwide but is curable if diagnosed early. Routinely, expert pathologists visually examine histology slides for assessing cervix tissue abnormalities. A localized, fusion-based, hybrid imaging and deep learning approach is explored to classify squamous epithelium into cervical intraepithelial neoplasia (CIN) grades for a dataset of 83 digitized histology images. Partitioning the epithelium region into 10 vertical segments, 27 handcrafted image features and rectangular patch, sliding window-based convolutional neural network features are computed for each segment. The imaging and deep learning patch features are combined and used as inputs to a secondary classifier for individual segment and whole epithelium classification. The hybrid method achieved a 15.51% and 11.66% improvement over the deep learning and imaging approaches alone, respectively, with a 80.72% whole epithelium CIN classification accuracy, showing the enhanced epithelium CIN classification potential of fusing image and deep learning features.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"381 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Hybrid Deep Learning and Handcrafted Feature Approach for Cervical Cancer Digital Histology Image Classification\",\"authors\":\"Haidar A. Almubarak, R. Stanley, Peng Guo, L. Long, Sameer Kiran Antani, G. Thoma, R. Zuna, S. R. Frazier, W. Stoecker\",\"doi\":\"10.4018/IJHISI.2019040105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cervical cancer is the second most common cancer affecting women worldwide but is curable if diagnosed early. Routinely, expert pathologists visually examine histology slides for assessing cervix tissue abnormalities. A localized, fusion-based, hybrid imaging and deep learning approach is explored to classify squamous epithelium into cervical intraepithelial neoplasia (CIN) grades for a dataset of 83 digitized histology images. Partitioning the epithelium region into 10 vertical segments, 27 handcrafted image features and rectangular patch, sliding window-based convolutional neural network features are computed for each segment. The imaging and deep learning patch features are combined and used as inputs to a secondary classifier for individual segment and whole epithelium classification. The hybrid method achieved a 15.51% and 11.66% improvement over the deep learning and imaging approaches alone, respectively, with a 80.72% whole epithelium CIN classification accuracy, showing the enhanced epithelium CIN classification potential of fusing image and deep learning features.\",\"PeriodicalId\":101861,\"journal\":{\"name\":\"Int. J. Heal. Inf. Syst. Informatics\",\"volume\":\"381 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Heal. Inf. Syst. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJHISI.2019040105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHISI.2019040105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Deep Learning and Handcrafted Feature Approach for Cervical Cancer Digital Histology Image Classification
Cervical cancer is the second most common cancer affecting women worldwide but is curable if diagnosed early. Routinely, expert pathologists visually examine histology slides for assessing cervix tissue abnormalities. A localized, fusion-based, hybrid imaging and deep learning approach is explored to classify squamous epithelium into cervical intraepithelial neoplasia (CIN) grades for a dataset of 83 digitized histology images. Partitioning the epithelium region into 10 vertical segments, 27 handcrafted image features and rectangular patch, sliding window-based convolutional neural network features are computed for each segment. The imaging and deep learning patch features are combined and used as inputs to a secondary classifier for individual segment and whole epithelium classification. The hybrid method achieved a 15.51% and 11.66% improvement over the deep learning and imaging approaches alone, respectively, with a 80.72% whole epithelium CIN classification accuracy, showing the enhanced epithelium CIN classification potential of fusing image and deep learning features.