探索图形处理加速器的内存访问模式

Jonas Dann, Daniel Ritter, H. Fröning
{"title":"探索图形处理加速器的内存访问模式","authors":"Jonas Dann, Daniel Ritter, H. Fröning","doi":"10.18420/btw2021-05","DOIUrl":null,"url":null,"abstract":"Recent trends in business and technology (e.g., machine learning, social network analysis) benefit from storing and processing growing amounts of graph-structured data in databases and data science platforms. FPGAs as accelerators for graph processing with a customizable memory hierarchy promise solving performance problems caused by inherent irregular memory access patterns on traditional hardware (e.g., CPU). However, developing such hardware accelerators is yet time-consuming and difficult and benchmarking is non-standardized, hindering comprehension of the impact of memory access pattern changes and systematic engineering of graph processing accelerators. \nIn this work, we propose a simulation environment for the analysis of graph processing accelerators based on simulating their memory access patterns. Further, we evaluate our approach on two state-of-the-art FPGA graph processing accelerators and show reproducibility, comparablity, as well as the shortened development process by an example. Not implementing the cycle-accurate internal data flow on accelerator hardware like FPGAs significantly reduces the implementation time, increases the benchmark parameter transparency, and allows comparison of graph processing approaches.","PeriodicalId":421643,"journal":{"name":"Datenbanksysteme für Business, Technologie und Web","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exploring Memory Access Patterns for Graph Processing Accelerators\",\"authors\":\"Jonas Dann, Daniel Ritter, H. Fröning\",\"doi\":\"10.18420/btw2021-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent trends in business and technology (e.g., machine learning, social network analysis) benefit from storing and processing growing amounts of graph-structured data in databases and data science platforms. FPGAs as accelerators for graph processing with a customizable memory hierarchy promise solving performance problems caused by inherent irregular memory access patterns on traditional hardware (e.g., CPU). However, developing such hardware accelerators is yet time-consuming and difficult and benchmarking is non-standardized, hindering comprehension of the impact of memory access pattern changes and systematic engineering of graph processing accelerators. \\nIn this work, we propose a simulation environment for the analysis of graph processing accelerators based on simulating their memory access patterns. Further, we evaluate our approach on two state-of-the-art FPGA graph processing accelerators and show reproducibility, comparablity, as well as the shortened development process by an example. Not implementing the cycle-accurate internal data flow on accelerator hardware like FPGAs significantly reduces the implementation time, increases the benchmark parameter transparency, and allows comparison of graph processing approaches.\",\"PeriodicalId\":421643,\"journal\":{\"name\":\"Datenbanksysteme für Business, Technologie und Web\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Datenbanksysteme für Business, Technologie und Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18420/btw2021-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Datenbanksysteme für Business, Technologie und Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18420/btw2021-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

商业和技术的最新趋势(例如,机器学习,社交网络分析)受益于在数据库和数据科学平台中存储和处理越来越多的图结构数据。fpga作为图形处理的加速器,具有可定制的内存层次结构,有望解决由传统硬件(例如CPU)固有的不规则内存访问模式引起的性能问题。然而,开发这样的硬件加速器仍然耗时且困难,并且基准测试是非标准化的,阻碍了对内存访问模式变化的影响的理解和图形处理加速器的系统工程。在这项工作中,我们提出了一个基于模拟其内存访问模式的图形处理加速器的仿真环境。此外,我们在两个最先进的FPGA图形处理加速器上评估了我们的方法,并通过实例展示了再现性,可比性以及缩短的开发过程。在fpga等加速器硬件上不实现周期精确的内部数据流可以显著减少实现时间,增加基准参数透明度,并允许比较图形处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Memory Access Patterns for Graph Processing Accelerators
Recent trends in business and technology (e.g., machine learning, social network analysis) benefit from storing and processing growing amounts of graph-structured data in databases and data science platforms. FPGAs as accelerators for graph processing with a customizable memory hierarchy promise solving performance problems caused by inherent irregular memory access patterns on traditional hardware (e.g., CPU). However, developing such hardware accelerators is yet time-consuming and difficult and benchmarking is non-standardized, hindering comprehension of the impact of memory access pattern changes and systematic engineering of graph processing accelerators. In this work, we propose a simulation environment for the analysis of graph processing accelerators based on simulating their memory access patterns. Further, we evaluate our approach on two state-of-the-art FPGA graph processing accelerators and show reproducibility, comparablity, as well as the shortened development process by an example. Not implementing the cycle-accurate internal data flow on accelerator hardware like FPGAs significantly reduces the implementation time, increases the benchmark parameter transparency, and allows comparison of graph processing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信