通过比较多语言目标情绪分析Twitter中的不成比例反应

K. S. Smith, R. McCreadie, C. Macdonald, I. Ounis
{"title":"通过比较多语言目标情绪分析Twitter中的不成比例反应","authors":"K. S. Smith, R. McCreadie, C. Macdonald, I. Ounis","doi":"10.1145/3110025.3110066","DOIUrl":null,"url":null,"abstract":"Global events such as terrorist attacks are commented upon in social media, such as Twitter, in different languages and from different parts of the world. Most prior studies have focused on monolingual sentiment analysis, and therefore excluded an extensive proportion of the Twitter userbase. In this paper, we perform a multilingual comparative sentiment analysis study on the terrorist attack in Paris, during November 2015. In particular, we look at targeted sentiment, investigating opinions on specific entities, not simply the general sentiment of each tweet. Given the potentially inflammatory and polarizing effect that these types of tweets may have on attitudes, we examine the sentiments expressed about different targets and explore whether disproportionate reaction was expressed about such targets across different languages. Specifically, we assess whether the sentiment for French speaking Twitter users during the Paris attack differs from English-speaking ones. We identify disproportionately negative attitudes in the English dataset over the French one towards some entities and, via a crowdsourcing experiment, illustrate that this also extends to forming an annotator bias.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analyzing Disproportionate Reaction via Comparative Multilingual Targeted Sentiment in Twitter\",\"authors\":\"K. S. Smith, R. McCreadie, C. Macdonald, I. Ounis\",\"doi\":\"10.1145/3110025.3110066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global events such as terrorist attacks are commented upon in social media, such as Twitter, in different languages and from different parts of the world. Most prior studies have focused on monolingual sentiment analysis, and therefore excluded an extensive proportion of the Twitter userbase. In this paper, we perform a multilingual comparative sentiment analysis study on the terrorist attack in Paris, during November 2015. In particular, we look at targeted sentiment, investigating opinions on specific entities, not simply the general sentiment of each tweet. Given the potentially inflammatory and polarizing effect that these types of tweets may have on attitudes, we examine the sentiments expressed about different targets and explore whether disproportionate reaction was expressed about such targets across different languages. Specifically, we assess whether the sentiment for French speaking Twitter users during the Paris attack differs from English-speaking ones. We identify disproportionately negative attitudes in the English dataset over the French one towards some entities and, via a crowdsourcing experiment, illustrate that this also extends to forming an annotator bias.\",\"PeriodicalId\":399660,\"journal\":{\"name\":\"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3110025.3110066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3110066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

诸如恐怖袭击之类的全球性事件在Twitter等社交媒体上以不同的语言和来自世界不同地区的评论。大多数先前的研究都集中在单语情感分析上,因此排除了很大一部分Twitter用户群。在本文中,我们对2015年11月在巴黎发生的恐怖袭击进行了多语言比较情绪分析研究。特别是,我们着眼于有针对性的情绪,调查对特定实体的意见,而不仅仅是每条推文的一般情绪。鉴于这些类型的推文可能对态度产生潜在的煽动性和两极分化效应,我们研究了对不同目标表达的情绪,并探讨了不同语言对这些目标是否表达了不成比例的反应。具体来说,我们评估了在巴黎袭击期间讲法语的Twitter用户的情绪是否与讲英语的Twitter用户不同。我们在英语数据集中发现了与法语数据集中对某些实体不成比例的负面态度,并通过众包实验说明,这也延伸到形成注释者偏见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Disproportionate Reaction via Comparative Multilingual Targeted Sentiment in Twitter
Global events such as terrorist attacks are commented upon in social media, such as Twitter, in different languages and from different parts of the world. Most prior studies have focused on monolingual sentiment analysis, and therefore excluded an extensive proportion of the Twitter userbase. In this paper, we perform a multilingual comparative sentiment analysis study on the terrorist attack in Paris, during November 2015. In particular, we look at targeted sentiment, investigating opinions on specific entities, not simply the general sentiment of each tweet. Given the potentially inflammatory and polarizing effect that these types of tweets may have on attitudes, we examine the sentiments expressed about different targets and explore whether disproportionate reaction was expressed about such targets across different languages. Specifically, we assess whether the sentiment for French speaking Twitter users during the Paris attack differs from English-speaking ones. We identify disproportionately negative attitudes in the English dataset over the French one towards some entities and, via a crowdsourcing experiment, illustrate that this also extends to forming an annotator bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信